首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=[α1,α2,α3,α4],且 η1=[1,1,1,1]T, η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则( ).
设A=[α1,α2,α3,α4],且 η1=[1,1,1,1]T, η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则( ).
admin
2022-09-14
37
问题
设A=[α
1
,α
2
,α
3
,α
4
],且
η
1
=[1,1,1,1]
T
,
η
2
=[0,1,0,1]
T
是齐次线性方程组Ax=0的基础解系,则( ).
选项
A、α
1
,α
3
线性无关
B、α
2
,α
4
线性无关
C、α
4
能被α
2
,α
3
线性表示
D、α
1
,α
2
,α
3
线性无关
答案
C
解析
将η
1
,η
2
代入Ax=0得到α
1
,α
2
,α
3
,α
4
之间的线性关系,再利用叩η
1
,η
2
为Ax=0的基础解系,得到秩(A)=2.利用这些便可判别选项的正确性.
解 因为η
1
,η
2
为齐次线方程组Ax=0的基础解系,可知基础解系含有n一r=2个向量,其中,n=4为齐次方程组未知量的个数,r为系数矩阵A的秩,所以
r一n一2=2.
因此A=[α
1
,α
2
,α
3
,α
4
]中任意3个向量都线性相关,故(D)不正确.
由Aη
2
=0得α
2
+α
4
=0,可见α
2
,α
4
线性相关,故(B)不正确.再由α
2
+α
4
=0可知,α
4
可以被α
2
线性表示,则α
4
可被α
2
,α
3
线性表示,故(C)正确.
由Aη
1
=0,得
α
1
+α
2
+α
3
+α
4
=0.
又由Aη
2
=0得α
2
+α
4
=0,所以α
1
+α
3
=0.于是α
1
,α
3
线性相关,故(A)不正确.
转载请注明原文地址:https://jikaoti.com/ti/sKhRFFFM
0
考研数学二
相关试题推荐
=_______.
=_______.
设z=z(χ,y)由方程z-mz=φ(y-nz)所确定(其中m,n为常数,φ为可微函数),则=_______.
设函数f(μ,ν)具有二阶连续偏导数z=f(x,xy),则=_________。
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=_________。
函数z=1一(x2+2y2)在点处沿曲线C:x2+2y2=1在该点的内法线方向n的方向导数为________.
A2—B2=(A+B)(A—B)的充分必要条件是________。
求函数f(χ)=(2-t)e-tdt的最小值和最大值.
证明:当x>0时,
(2008年)设函数f(χ)在(一∞,+∞)内单调有界,{χn}为数列,下列命题正确的是【】
随机试题
自激振荡器的输出量须经正反馈电路反馈到输入端才能使振荡器起振。()
A、枳实B、木香C、乌药D、香附E、沉香能够破气消积的药物是
腹部触诊有“腹壁柔韧感”,则诊断为
贮存温度不超过30℃的剂型为()。
发生气管损伤时,首先要处理的是()。
在建设期内因各种不可预见因素的变化而预留的可能增加的费用是()
企业购入三项没有单独标价的不需要安装的固定资产A、B、C,实际支付的价款总额为100万元。其中固定资产A的公允价值为60万元,固定资产B的公允价值为40万元,固定资产C的公允价值为20万元。固定资产A的入账价值为()万元。
忌讳说“恭喜发财”,认为是发“不义之财”,是对别人的轻视与辱骂的是()。
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
WhatdoesDrEmilyGardinerdo?
最新回复
(
0
)