首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
admin
2019-07-22
48
问题
设f(x)为[a,b]上的函数且满足
则称f(x)为[a,b]上的凹函数,证明:
(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.
(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
(i)
∈[0,1],f(λx
1
+(1一λ)x
2
)≤λf(x
1
)+(1—λ)f(x
2
),x
1
,x
2
∈[a,b];
(iv)f(x)为(a,b)上的连续函数.
选项
答案
(1)对[*]x,x
0
∈[a,b],有 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x-x
0
)
2
>f(x
0
)+f’(x
0
)(x—x
0
),在上式中分别取x=x
1
,x=x
2
,[*]得到 [*] 上述两式相加即得证. (2)先证(i).由(1)有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
),分别取x=x
1
,x=x
2
,x
0
=λx
1
+(1一λ)x
2
,得到 f(x
1
)≥f(x
0
)+(1一λ)f’(x
0
)(x
1
—x
2
), ① f(x
2
)≥f(x
0
)+λf’(x
0
)(x
2
一x
1
). ② λ×①+(1一λ)×②得 λf(x
1
)+(1-λ)f(x
2
)≥f(x
0
)=f(λx
1
+(1一λ)x
2
), 得证[*] 再证(iv).[*]∈[a,b],设G为|f(x)|的上界,取绝对值充分小的δ,m<n,使得 x
1
=x
2
=…=x
m
=x+nδ,x
m+1
=…=x
n
=x.由(ii)知 [*] 令δ→0,则n→∞,故有f(x+δ)一f(x)→0,从而证明了f(x)的连续性.
解析
转载请注明原文地址:https://jikaoti.com/ti/r6ERFFFM
0
考研数学二
相关试题推荐
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
令sinχ-cosχ=a(sinχ+2cosχ)+b(sinχ+2cosχ)′,则[*]解得a=-[*],b=-[*],于是[*]
n阶实对称矩阵A正定的充分必要条件是()
下列广义积分收敛的是[].
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
参数a取何值时,线性方程组有无数个解?求其通解.
设f(χ)=∫0tanχarctant2dt,g(χ)=χ→sinχ,当χ→0时,比较这两个无穷小的关系.
设有平面闭区域,D={(x,y)|一a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
求f(x)=3x带拉格朗日余项的n阶泰勒公式.
随机试题
联系实际说明客户服务的含义、内容及意义。
男性,19岁,左胫腓骨闭合骨折1小时来就诊,行手法复位石膏外固定12小时后,出现患肢持续性剧烈疼痛,左足皮温降低。下列哪项是本病首选的处理方法
某工程的混凝土分项工程量为850m3,混凝土分项工程的人工费为100元/m3,材料费为300元/m3,机械费为50元/m3,管理费为分项工程人、材、机之和的10%,利润率为5%,措施费以分部分项工程费的20%计算,规费按3%计,综合税率为3.41%。【问
有关全损赔偿金额的计算的说法,错误的是()
下列说法,不符合车船税法定免税规定的是()。
关于断乳食物()。
法律的运行是一个从创制、实施到实现的过程。这个过程主要包括法律制定、法律执行、法律适用、法律遵守等环节。法律运行的起始性和关键性环节是()
Lowlevelsofliteracyandnumeracyhaveadamagingimpactonalmosteveryaspectofadults,accordingtoasurveypublishedyes
企业系统规划方法的基本原则不包括
FromGolda:theLifeofIsrael’sPrimeMinisterTheStrugglewithHerParentsoverHerEducationWhenGoldagraduatedas
最新回复
(
0
)