首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
设f(x)为[a,b]上的函数且满足则称f(x)为[a,b]上的凹函数,证明: (1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数. (2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
admin
2019-07-22
52
问题
设f(x)为[a,b]上的函数且满足
则称f(x)为[a,b]上的凹函数,证明:
(1)若f(x)在[a,b]上二阶可微,且f"(x)>0,则f(x)为[a,b]上的凹函数.
(2)若f(x)为[a,b]上的有界凹函数,则下列结论成立:
(i)
∈[0,1],f(λx
1
+(1一λ)x
2
)≤λf(x
1
)+(1—λ)f(x
2
),x
1
,x
2
∈[a,b];
(iv)f(x)为(a,b)上的连续函数.
选项
答案
(1)对[*]x,x
0
∈[a,b],有 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x-x
0
)
2
>f(x
0
)+f’(x
0
)(x—x
0
),在上式中分别取x=x
1
,x=x
2
,[*]得到 [*] 上述两式相加即得证. (2)先证(i).由(1)有f(x)≥f(x
0
)+f’(x
0
)(x—x
0
),分别取x=x
1
,x=x
2
,x
0
=λx
1
+(1一λ)x
2
,得到 f(x
1
)≥f(x
0
)+(1一λ)f’(x
0
)(x
1
—x
2
), ① f(x
2
)≥f(x
0
)+λf’(x
0
)(x
2
一x
1
). ② λ×①+(1一λ)×②得 λf(x
1
)+(1-λ)f(x
2
)≥f(x
0
)=f(λx
1
+(1一λ)x
2
), 得证[*] 再证(iv).[*]∈[a,b],设G为|f(x)|的上界,取绝对值充分小的δ,m<n,使得 x
1
=x
2
=…=x
m
=x+nδ,x
m+1
=…=x
n
=x.由(ii)知 [*] 令δ→0,则n→∞,故有f(x+δ)一f(x)→0,从而证明了f(x)的连续性.
解析
转载请注明原文地址:https://jikaoti.com/ti/r6ERFFFM
0
考研数学二
相关试题推荐
微分方程y〞-4y=χ+2的通解为().
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫abf(χ)dχ=2∫Tbf(χ)dχ+∫a2T-bf(χ)dχ.
积分=()
设L:(0≤t≤2π).(1)求曲线L与χ轴所围成平面区域D的面积.(2)求区域D绕χ轴旋转一周所成几何体的体积.
求曲线y=3-|χ2-1|与χ轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
参数a取何值时,线性方程组有无数个解?求其通解.
运用导数的知识作函数y=x+的图形.
设y=f(x)可导,且y’≠0.若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式.
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
随机试题
男性,25岁,低热、咳嗽2个月。X线胸片示右上叶后段2cm×2cm圆形阴影,边缘有长矛刺,密度不均匀,周围有多个卫星灶女性,20岁,高热20天,伴乏力、盗汗、食欲不振及干咳。胸片示双肺弥漫性粟粒样结节,大小密度均匀一致
患者,男,68岁。突起剧烈压榨样胸痛、呕吐伴窒息感2小时入院。查心率110次/分,血压85/60mmHg,心电图示V1~V4导联ST段呈弓背向上抬高,律不齐。本病例最可能的诊断为
以下关于巨幼细胞性贫血的说法,错误的是()。
毒性反应一般是由于__________过大或__________过长或患者对__________过高而引起的机体功能失调或组织病理变化。
下列哪种材料不是绝热材料?
会计电算化已成为一门融电子计算机科学、管理科学、信息科学、会计科学等现代科技为一体的边缘学科。()
按照会计电算化的服务层次和提供信息的深度,可以分为()不同的发展阶段。
根据一般均衡理论,商品的价格取决于()。
新课程的具体目标除了改革考试和评价制度、重建课程管理体系外,还包括()
中国革命的基本问题是()。
最新回复
(
0
)