首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2017-11-22
38
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c).
B、(a),(c),(b).
C、(b),(a),(c).
D、(c),(a),(h).
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f)>0(x∈[0,1])
f’(x)≥0,∫
0
x
f(t)dt>0(
x∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(C)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://jikaoti.com/ti/qbKRFFFM
0
考研数学三
相关试题推荐
设,其中D:x2+y2≤a2,则a为().
设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设f(x)=,求f(x)的间断点并判断其类型.
证明:,其中a>0为常数.
求函数f(x)一nx(1一x)n在[0,1]上的最大值M(n)及limM(n).
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
已知ξ=[1,1,一1]T是矩阵的一个特征向量.确定参数a,b及考对应的特征值λ;
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设f(x)=(1+x2)x2,g(x)=∫01—cosxsint2dt,则x→0时f(x)是g(x)的
随机试题
某厂要用铁板做成一个体积为2立方米的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时,才能使用料最省?
《芦川词》是下列哪位词人的词集()
以下()措施与提高组织的道德标准或提升员工的道德修养无关。
能活血消肿,治疗跌扑伤痛的药物是
残髓炎疼痛的特点是
10个月小儿,因高热4天伴反复惊厥入院。体检:体温2℃,神志清,嗜睡,颈部抵抗,心、肺、腹无异常。Kerning征、Brudzinski征阳性,Barbinski征阴性;血常规:白细胞8×109/L,中性0.89,淋巴0.11,脑脊液常规:白细胞1200×
公路工程中,地基承载力基本容许值是指基础短边不大于2.0m,埋置深度()时的地基容许承载力。
阅读以下文字,完成下列题。作为一种文化载体的民间传说或神话并非完全出于古人的想象,而往往以某些史前事件为事实依据。“女娲补天”神话的起源应是源于远古时期一次影响深远的灾害。最近,中南民族大学罗漫提出,著名的神话“女娲炼五色石以补苍天”,是一则典
数据库系统其内部分为3级模式,即概念模式、内模式和外模式。其中,______是用户的数据视图,也就是用户所见到的数据模式。
A、含保险B、不能打折C、可以改签D、是往返机票D
最新回复
(
0
)