设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.

admin2017-10-21  29

问题 设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.

选项

答案用定义证明.用反证法.如果α,Aα,…,Ak-1α线性相关,则存在不全为0的c1,c2,…,ck,使得c1α+ c2Aα+…+ckAk-1α=0,设其中第一个不为0的系数是ci,则ciAi-1α+…+ckAk-1α=0,用Ak-i乘之,得ciAk-1α=0.从而Ak-1α=0,与条件矛盾.

解析
转载请注明原文地址:https://jikaoti.com/ti/qYSRFFFM
0

最新回复(0)