首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2018-08-22
33
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
)的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用[*]这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
)必发散.这是因为若{x
n
y
n
}收敛,且{x
n
}收敛而极限不等于零,则从上述恒等式及极限的除法法则,可知{y
n
}收敛,这与假设矛盾.若[*]且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①[*]y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②[*]y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是{x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式[*] 便得到{y
n
}收敛于零,这与假设矛盾.若{x
n
}和{y
n
}都不是无穷大,且都发散,则{x
n
y
n
}可能收敛,也可能发散,如: ③x
n
=y
n
=(一1)
n
,有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=1一(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
)发散.
解析
转载请注明原文地址:https://jikaoti.com/ti/qSWRFFFM
0
考研数学二
相关试题推荐
设a1=0,当n≥1时,an+1=2一cosan,证明:数列{an}收敛,并证明其极限值位于区间(,3)内.
数列{xn}通项
设f(x)是三次多项式,且有
e6
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设曲线f(x)=xn(n为正整数)在点(1,1)处的切线与x轴相交于点(ξn,0),求
设xn=又un=x1+x2+…+xn,证明当n→∞时,数列{un}收敛.
A、 B、 C、 D、 CS(x)可看作是f(x)作偶延拓后再作周期为2的周期延拓后的函数的傅里叶级数之和.由于S(x)是以2为周期的偶函数,所以由傅里叶级数的收敛定理知
(1998年)已知函数y=f(χ)在任意点χ处的增量△y=+α,其中α是比△χ(△χ→0)的高阶无穷小,且y(0)=π,则y(1)=【】
设则d2y/dx2=_______。
随机试题
A.四磨汤B.大定风珠C.复脉汤D.苏子降气汤与三甲复脉汤主治接近的方剂是
沙门氏菌食物中毒属于
下列关于水电站厂区枢纽中的主变压器场的说法正确的是()。
对急性化脓性骨髓炎具有早期诊断意义的检查方法是()。
关于经史子集,下列对应错误的是()。
风险投资(浙江财经大学2012真题)
无数事实证明,人有了明确的理想,才能在人生的追求上不断攀登,最大限度地实现人生价值;人若没有明确的理想,就会像没有舵的小船,在生活的大海中迷失方向,甚至搁浅触礁。下列关于理想信念的作用表述错误的是()
阅读下列材料回答问题:材料12019年是中华人民共和国成立70周年。这70年,是中华氏族迎来从站起来、富起来到强起来伟大飞跃的70年,是中国为世界不断做出重大贡献的70年。70年来,新中国外交作为新中国发展进程的重要组成部分,助推了中华
Howhardistogetbeautifulhair?Beautifulhaircannotbetakenforgranted.Environmentalfactors,chemicaltreatmentsan
______(与我们曾经住过的又暗又湿的地下室相比)ournewflatisparadise.
最新回复
(
0
)