首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22一2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22一2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
admin
2020-10-21
79
问题
已知三元二次型f(x
1
,x
2
,x
3
)=x
T
Ax经正交变换化为y
1
2
+y
2
2
一2y
3
2
,又A
*
α=α,其中矩阵A
*
是矩阵A的伴随矩阵,α=(1,1,1)
T
,求此二次型的表达式.
选项
答案
因为二次型f=x
T
Ax经正交变换化为y
1
2
+y
2
2
—2y
3
2
,所以矩阵A的特征值分别为1,1,一2,从而|A|=一2,将A
*
α=α两端左乘矩阵A,得AA
*
α=Aα,由AA
*
=|A|E得Aα=—2α,故α=(1,1,1)
T
是矩阵A的特征值一2对应的特征向量. 设矩阵A的特征值1对应的特征向量α
1
=(x
1
,x
2
,x
3
)
T
,因为A是对称矩阵,所以 α
T
α
1
=x
1
+x
2
+x
3
=0, 取α
11
=(—1,一1,2)
T
,α
12
=(1,一1,0)
T
,则α
11
,α
12
是矩阵A的特征值1对应的特征向量,且正交. 将α
11
,α
12
,α单位化,得 [*] 取P=(β
1
,β
2
,β
3
)=[*],则P是正交矩阵,且 P
-1
AP=P
T
AP=A=[*] 所以 A=PAP
-1
=PAP
T
=[*] 故二次型的表达式为f=x
T
Ax=一2x
1
x
2
一2x
1
x
3
—2x
2
x
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/pxARFFFM
0
考研数学二
相关试题推荐
n阶矩阵A经过若干次初等变换化为矩阵B,则().
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,可以作为导出组Ax=0的解向量有()个。
微分方程y"-4y’=x2+cos2x的特解形式为()。
计算积分,其中D是由直线y=2,y=0,x=-2及曲线x=-所围成的区域.
设有解。求X
设A、B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设二次型f(χ1,χ2,χ3)=5χ12+aχ22+3χ32-2χ1χ2+6χ1χ3-6χ2χ3的矩阵合同于.(Ⅰ)求常数a的值;(Ⅱ)用正交变换法化二次型f(χ1,χ2,χ3)为标准形.
设函数f(χ)具有一阶导数,下述结论中正确的是().
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
随机试题
动词和形容词的语法特点大同小异,可以合称为_____。
Fromchildhoodtooldage,wealluselanguageasameansofbroadeningourknowledgeofourselvesandtheworldaboutus.When
能使脉压增大的情况是
下列哪一种激素可使宫颈黏液稀薄、透明、伸展性最大
A.乌头碱B.姜酚C.知母菝葜皂苷元D.马兜铃酸E.人参皂苷Rb1和Rg1能显著抑制红细胞膜钠泵活性的成分是()
老方创作的纪实小说《村支书的苦与乐》,以某县吴村村支部书记吴某为原型进行创作,其中描述了他与村霸林申(以林甲为原型)之间斗智斗勇的冲突场面。小说在《山南海北》杂志发表后,林甲认为小说将村支书作为正义的化身进行描述,将自己作为“村霸”进行刻画,侵犯其名誉权。
科学家们经过多年的努力,创立了一种新兴的生物技术——基因工程,实施该工程的最终目的是()。
A.it’sawindowtablethatwe’vebookedB.justusherhimhereC.We’veareservationforatablefortwounderthenameofSte
汉字机内码与国标码的关系为:机内码=国标码+8080H。若已知某汉字的国标码为3456H,则其机内码为______。A.B4D6HB.B536HC.D486HD.C4B3H
Thiscomposerhasnevercourtedpopularity:herruggedmodernismseemstodefyratherthanto______theaudience.
最新回复
(
0
)