首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2018-09-20
30
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
…η
s
分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
充分性 由γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关,知存在不全为零的一组数k
1
,k
2
,…, k
t
,l
1
,l
2
,…,l
s
,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 令ξ=k
1
γ
1
+k
2
γ
2
++…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
全为0),且ξ=-l
1
η
1
-l
2
η
2
一…-l
s
η
s
, 即非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. 必要性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,且 ξ=-l
1
η
1
一l
2
η
2
-…一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 从而γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/pfIRFFFM
0
考研数学三
相关试题推荐
设f(x)连续,证明:
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
随机试题
A.吞钡X线示黏膜粗大,伴息肉样充盈缺损和多发性小龛影B.胃壁僵直、蠕动消失,呈皮革状C.食管黏膜皱襞增粗,迂曲、中断,边缘毛刺状D.食管示虫蚀样或蚯蚓状充盈缺损E.X线钡餐示菊花样充盈缺损
肝素抗凝血可造成血涂片染色的背景成为
公正原则的前提是维护杜绝医疗服务中的不合理现象是维护
A.国家药品监督管理部门B.省级药品监督管理部门C.市级以上药品监督管理部门D.县级以上药品监督管理部门批准开办药品零售企业并发给《药品经营许可证》的部门是()。
下列选项中不属于银行项目中非财务分析包括的内容是()
根据劳动合同法律制度的规定,下列情形中,用人单位与劳动者可以不签订书面劳动合同的是()。
下列各项中,符合消费税法有关应按当期生产领用数量计算准予扣除外购的应税消费品已纳消费税税款规定的是()。(2003年)
一批商品,按原价格销售了60%以后打五折出售,最后发现总的利润率是20%,问:按原价销售的利润率是多少?
在日常写作过程中,如果不注意标点符号的使用,就容易使文字表达产生歧义。下列各项中,标点符号使用合乎规范的一项是()。
ParisisthecapitalofFrance.Itisoneofthemostpopulartouristdestination(旅游目的地)intheworld.Withitsworld-famousla
最新回复
(
0
)