首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0 l2:ax+2cy+3a=0 l3:ax+2ay+3b=0 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-07-19
21
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0
l
2
:ax+2cy+3a=0
l
3
:ax+2ay+3b=0
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性 设三直线l
1
,l
2
,l
3
交于一点,则二元线性方程组 [*] =3(a+b+c)[(a—b)
2
一(b—c)
2
+(c—a)
2
] 及 (a—b)
2
+(b—c)(c—a)
2
≠0, (否则a=b=c,则三条直线重合,从而有无穷多个交点,与交点惟一矛盾),所以a+b+c=0. 充分性 若a+b+c=0,则由必要性的证明知[*],又系数矩阵A中有一个二阶于式 [*] 故秩(A)=2,于是有秩(A)=秩(A)=2,因此方程组(*)有惟一解,即三直线l
1
,l
2
,l
3
交于一点.@注释@本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
解析
本题在将几何问题转化为代数问题之后,证法1主要利用了非齐次线性方程组有惟一解的充要奈件,证法2主要利用了Cramer法则的结果.注意,由于平面直线的方程是二元一次方程,故本题实际上隐含了下述条件:a与b不同时为零,b与c不同时为零,c与a不同时为零,本题两种证法的充分性证明中都用到这些条件.
转载请注明原文地址:https://jikaoti.com/ti/pWQRFFFM
0
考研数学一
相关试题推荐
求让:x∈[0,1]时,≤xp+(1一x)≤1,p>1;1≤xp+(1—x)p≤,0<p<1.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
设F(x,y,z)有连续偏导数,求曲面S:点(x0,y0,z0)处的切平面方程,并证明切平面过定点.
圆柱面的轴线是L:,点P0(1,一1,0)是圆柱面上一点,求圆柱面方程.
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x一x0)>f(x).(*)
求下列方程的通解或满足给定初始条件的特解:y"+4y’+1=0
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=O的三个线性无关的解向量,则()为AX=O的基础解系.
设f(x)可导,F(x)=f(x)(1+丨sinx丨),则f(0)=0是F(x)在x=0处可导的
二次型f=χTAχ经过满秩线性变换χ=Py可化为二次型yTBy,则矩阵A与B()
已知y1=xex+e2x,y2=xex-e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
随机试题
拔除左下第二前磨牙和第一磨牙时不需要麻醉的神经是
用三腔气囊管压迫止血时需注意
A.β受体阻滞剂B.利尿剂C.α受体阻滞剂D.血管紧张素Ⅱ受体阻滞剂E.钙通道阻滞剂糖尿病肾病合并高血压首选
关于关税的减免税,下列表述正确的有()。
实行内部成本核算的事业单位,其无形资产应在受益期内平均摊销,摊销额计入( )科目。
海关对进口产品代征增值税、消费税,()城市维护建设税。
糖是一类含有多羟基的醛类或酮类化合物的总称,其化学组成是()
简述民法典上观念交付的主要形式。[暨南大学2020年研]
把产品技能和知识带到项目团队的恰当方式是(22)。
Jillhas6xredmarblesandAygreenmarbles.BillhashalfasmanyredmarblesasJill,buthehastwiceasmanyredmarblesan
最新回复
(
0
)