首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P-1AP; ③AT; ④E一A。 α肯定是其特征向量的矩阵个数为( )
admin
2018-02-07
24
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
;
②P
-1
AP;
③A
T
;
④E一
A。
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
知α必是矩阵E一
A属于特征值1一
λ的特征向量。
关于②和③则不一定成立。这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α。因为P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://jikaoti.com/ti/pSdRFFFM
0
考研数学二
相关试题推荐
[*]
设,证明fˊ(x)在点x=0处连续.
解下列不等式:(1)x2<9(2)|x-4|<7(3)0<(x-2)2<4(4)|ax-x。|<δ(a>0,δ>0,x。为常数)
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
不等式的解集(用区间表示)为[].
设A为n阶可逆矩阵,则下列结论正确的是().
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
随机试题
股权类产品的衍生工具的种类包括()。Ⅰ.股票期货Ⅱ.股票期权Ⅲ.股票指数期货Ⅳ.股票指数期权
A.黑质B.丘脑底核C.新纹状体D.旧纹状体亨廷顿病的病变部位是
胸部损伤后出现颈静脉怒张、奇脉、血压下降、脉压变小,此时首先应想到
A.药效团B.氢键C.偶极-偶极相互作用D.手性药物E.范德华引力
范某参加单位委托某拓展训练中心组织的拔河赛时,由于比赛用绳断裂导致范某骨折致残。范某起诉该中心,认为事故主要是该中心未尽到注意义务引起,要求赔偿10万余元。法院认定,拔河人数过多导致事故的发生,范某本人也有过错,判决该中心按40%的比例承担责任,赔偿4万元
穿堤闸施工前,在征得监理单位批准后,施工单位进行了补充地质勘探,由此产生的费用应由()承担。
中辽汽车配件有限公司2101950187出口汽车配件一批。_______
在完全竞争的市场类型中,所有的企业都能控制市场的价格和使产品差异化。( )
控制器的主要功能是()。
Haveyouevermadeaprofitfromwalkingadog?Doyoulikeworkingaloneoringroups?Haveyoueversetaworldrecordinanyt
最新回复
(
0
)