首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题 ①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
以下4个命题 ①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
admin
2016-06-25
38
问题
以下4个命题
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
一∞
+∞
f(x)dx必收敛,且∫
一∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
∫
一R
R
f(x)dx存在,则∫
一∞
+∞
f(x)dx必收敛,且∫
一∞
+∞
f(x)dx=
∫
一R
R
f(x)dx;
③若∫
一∞
+∞
f(x)dx与∫
一∞
+∞
g(x)dx都发散,则∫
一∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
一∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
一∞
+∞
f(x)dx未必发散.
正确的个数的 ( )
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
一∞
+∞
f(x)dx收敛←→存在常数a,使∫
一∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
一∞
+∞
f(x)dx=∫
一∞
a
f(x)dx+∫
a
+∞
f(x)dx.
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
一R
R
f(x)dx=0.但是
∫
一∞
0
f(x)dx=∫
一∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
一∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=一x,由上面讨论可知∫
一∞
+∞
f(x)dx与∫
一∞
+∞
g(x)dx都发散,但∫
一∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题.故应选(A).
转载请注明原文地址:https://jikaoti.com/ti/p5zRFFFM
0
考研数学二
相关试题推荐
设f(x)在x=1处一阶连续可导,且f′(1)=-2,则________.
设函数f(x)满足关系f″(x)+f′2(x)=x,且f(0)=0,则().
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设f(x)的一个原函数为F(x),且F(x)为方程xy′+y=ex的满足(x)=1的解.(1)求F(x)关于x的幂级数;(2)求的和.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1.f″(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设A,B是两个随机事件,P(A|B)=0.4,P(B|A)=0.4,则P(A+B)=________.
设一次试验成功的概率为P,进行100次独立重复试验,当P=________时,成功次数的标准差最大,其最大值为________.
函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=________。
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=________.
设f(x)可导,则当△x→0时,△y-dy是△x的().
随机试题
拘役的执行机关是【】
中国当前的金融监管体系由______构成。
颈部淋巴管瘤的超声特点有
外感热病极期,多见舌质()。
巴黎圣母院是著名的哥特式建筑之一。()
管理的适度原则要求管理要进行()。
在下列描述中,对财务困境的流量资不抵债(Flow-basedInsolvency)的描述,不正确的是()。
下列经济指标与衡量对象对应关系正确的是()。
下面关于过程调用的陈述中,正确的是()。
TheConquestofDistanceIn1848,pioneerswhocrossedtheAmericancontinentintheirwagonsmadethetripin109days.
最新回复
(
0
)