首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( ).
设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( ).
admin
2013-09-15
46
问题
设f
’
(x)在[a,b]上连续,且f
’
(a)>0,f
’
(b)<0,则下列结论中错误的是( ).
选项
A、至少存在一点x
0
∈(a,b),使得f(x
0
)>f(a)
B、至少存在一点x
0
∈(a,b),使得(x
0
)>f(b)
C、至少存在一点x
0
∈(a,b),使得f
’
(x
0
)=0
D、至少存在一点x
0
∈(a,b),使得f(x
0
)=0
答案
D
解析
由已知,f
’
(a)>0,则
,从而存在δ
1
>0,
当x∈(a,a+δ
1
)时,f(x)>f(a);fδ
’
(b)<0,则
,从而δ
2
>0,
当x∈(b-δ
2
,b)时,f(x)>f(b).至此可知(A)、(B)正确.
又由已知f
’
(x)在[a,b]上连续,及f
’
(a)>0,f
’
(b)<0,则由连续函数的介值定理,
知存在一点x
0
∈(a,b),使得f
’
(x
0
)=0,故(C)也正确.
关于(D),若令[a,b]=[-1,1],f(x)=2-x
2
,
则f
’
(x)=-2x且f
’
(-1)=2>0及f
’
(1)=-2<0,但f(x)>0,所以(D)错误.选(D).
转载请注明原文地址:https://jikaoti.com/ti/p5DRFFFM
0
考研数学二
相关试题推荐
设二次型f(x1,x2)=x12一4x1x2+4x22经正交变换化为二次型g(y1,y2)=ay12+4y1y2+by22,其中a≥b.求正交矩阵Q.
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2。(Ⅰ)求实数a的值;(Ⅱ)求正交变换x=Qy,将f化为标准形。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表出。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表出
(93年)假设:(1)函数y=f(χ)(0≤χ<+∞)满足条件f(0)=0,和0≤0(χ)≤eχ-1;(2)平行于y轴的动直线MN与曲线y=f(χ)和y=eχ-1分别相交于点p1和p2;(3)曲线y=f(χ),直线MN与χ轴所围封闭图形
(03年)设f(u,v)具有二阶连续偏导数,且满足=1,又g(χ,y)=f[χy,(χ2-y2)],求.
设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
(02年)(1)验证函数y(χ)=1++…(-∞<χ<+∞)满足微分方程y〞+y′+y=eχ(2)利用(1)的结果求幂级数的和函数.
(2001年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
[2005年]设an>0(n=1,2,…),若发散,收敛,则下列结论正确的是().
(16年)设二次型f(χ1,χ2,χ3)=a(χ12+χ22+χ32)+2χ1χ2+2χ2χ3+2χ1χ3的正、负惯性指数分别为1,2,则【】
随机试题
土地收益金的征收办法,在国务院未作出新的规定之前,应当按照()的规定,由房地产市场管理部门在办理房地产交易手续时收取土地收益金上缴国家。
“富贵不能淫,贫贱不能移,威武不能屈”体现的意志品质是()
盛唐最著名田园山水诗人是孟浩然和________。他们的诗歌表现祖国山河的壮丽和田园的自然质朴,诗中有画。
______isannouncedintoday’spapers,alltheschoolswillopenonSeptember1.
甲乙两人因房屋租赁合同纠纷诉至法院,甲主张乙连续三个月未按时交纳房租,乙对该主张既不表示承认也不否认。对于该事实不应当:()
对钢板桩围堰的施工要求的说法中,正确的是()。
下列各项不属于相对考评法的是()。
如图,△ABO的顶点坐标分别为A(1,4),B(2,1),O(0,0),如果将△ABO绕点O按逆时针方向转90°,得到△A’B’O,那么对应点A’,B’的坐标是().
建立原型是一个(),而不是一个逻辑过程。
Analystshavehadtheirgoathumor,andIhavereadsomeofthisinterpretativeliterature,butwithoutbeinggreatlyinstructe
最新回复
(
0
)