首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,一1)T,α2=(2,7,0,4)T,α3=(5,17,一l,7)T. 设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α2,α3,α4可表示任何一个4维向量.
设α1=(1,3,5,一1)T,α2=(2,7,0,4)T,α3=(5,17,一l,7)T. 设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α2,α3,α4可表示任何一个4维向量.
admin
2019-01-25
24
问题
设α
1
=(1,3,5,一1)
T
,α
2
=(2,7,0,4)
T
,α
3
=(5,17,一l,7)
T
.
设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示. 由第一题知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示, 设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
) =c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
) =0, 得α
4
=0,与α
4
是非零向量矛盾.
解析
转载请注明原文地址:https://jikaoti.com/ti/p41RFFFM
0
考研数学一
相关试题推荐
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
计算I=∫L(ex+1)cosydx一[(ex+x)siny—x]dy,其中L为由点A(2,0)沿心形线r=1+cosθ上侧到原点的有向曲线段.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:=kf(x,y,z).
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设.(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设f(x)在[0,+∞)内二阶可导,f(0)=一2,f’(0)=1,f’’(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=________,该微分方程的通解为_________.
设f(x)在x=0的某邻域内二阶连续可导,且=0.证明:级数绝对收敛.
设f(μ)连续可导,且∫04f(μ)du=2,L为半圆周y=,起点为原点,终点为B(2,0),则I=∫Lf(x2+y2)(xdx+ydy)=_________.
设a=3i+4k,b=-i+2j-2k,求与向量a和b均垂直的单位向量.
随机试题
简述国际市场人员推销的主要功能包括几个方面。
常发生于尿路器械检查后的细菌是
男子滑精早泄见于()女子经闭不孕见于()
A.B.C.D.E.山莨菪碱的化学结构是()。
生产管理、生产调度程控交换机的电缆网络应()。
期货公司与客户签订的期货经纪合同对下达交易指令的方式未作约定或者约定不明确的,期货公司不能证明其所进行的交易是依据客户交易指令进行,并且事后客户未予追认的,对该交易造成客户的损失,()应当承担赔偿责任。
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为__________.
Ila______laporteetpuisils"enestallé.
agreements
RestrictMobilePhonesintheLibrary1.现在有不少人在图书馆的阅览区里使用手机2.这一现象可能带来的影响3.我的看法
最新回复
(
0
)