首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-05-12
33
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
—3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到
A(α
1
+α
3
)=0α
1
—2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://jikaoti.com/ti/otoRFFFM
0
考研数学一
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.求A的特征值与特征向量.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设随机变量X,Y相互独立,它们的分布函数为FX(x),FY(y),则Z=min{X,Y}的分布函数为().
设f二阶可偏导,z=f(xy,x+y2),则=_________.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数,证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
求f(x)=3x带拉格朗日余项的n阶泰勒公式.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设则(A*)1=______.
随机试题
下列哪些方剂均出自《温病条辨》( )
政策性银行的特征包括()
预防焊接变形可以采用进行合理的焊接结构设计的措施,下列选项中属于这种措施的有()。
在一元线性回归分析中,对相关系数r来说,下列结论正确的是________。
知识一旦学到手就可以保持得很牢固,相比较而言,动作技能形成以后却比较容易遗忘。()
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6)。证明:α1,α2线性无关。
在一桩涉嫌贩卖冰毒的案件中,证人小康起了关键证明作用,下列表述错误的是()。
①但实证是手段而不是目的,史学的真正使命是探索社会变迁的内在逻辑与规律,为文明的提升提供借鉴与参考②清儒章学诚强调“言性命者必究于史”,反对离事而言理,体现了史学在真理探索中的重要作用③史学是一门科学,其最显著的学术特点是实证
管理幅度
语句LISTMEMORYLIKEa*能够显示的变量不包括
最新回复
(
0
)