首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年]设f’(x)在Ea,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( ).
[2004年]设f’(x)在Ea,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( ).
admin
2019-03-30
41
问题
[2004年]设f’(x)在Ea,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( ).
选项
A、至少存在一点x
0
∈(a,b),使得f(x
0
)>f(a)
B、至少存在一点x
0
∈(a,b),使得f(x
0
)>f(b)
C、至少存在一点x
0
∈(a,b),使得f’(x
0
)=0
D、至少存在一点x
0
∈(a,b),使得f(x
0
)=0
答案
D
解析
解一 由题设知,f’(x)在[a,b]上连续且f’(a)>0,f’(b)<0.对f’(x)在[a,b]上使用零点定理知,至少存在一点x
0
∈(a,b),使f’(x
0
)=0.(C)正确.
另外,由
及极限的保号性知,至少存在一点x
0
∈(a,b),使
而x
0
-a>0,故必有f(x
0
)>f(a).
同理可知,至少存在一点x
0
∈(a,b),满足
故f(x
0
)>f(b).(A)、(B)均正确.仅(D)入选.
解二 因f’(x)在[a,b]上连续,f’(a)>0,利用命题1.1.7.1知,存在δ
1
>0,使f(x)在(a,a+δ
1
)内单调增加,因而至少存在一点x
0
∈(a,a+δ
1
),使f(x
0
)>f(a).(A)成立.又因f’(b)<0,利用命题1.1.7.1知,至少存在δ
2
>O,使f(x)在(b-δ
2
,b)内单调减少,因而至少存在一点x
0
∈(b-δ
1
,b),使f(x
0
)>f(b).(B)也成立.
由解一知,(C)也成立.仅(D)入选.
解三 举反例用排错法确定选项.令f(x)=-x
2
+3,a=-1,b=1,显然f’(x)在[-1,1]上连续,且f’(-1)=-2x|
x=-1
>0,f’(1)=-2x|
x-1
<0,但在(-1,1)内不存在x
0
使f(x
0
)=0.事实上,f(x)=0即x
2
=3的根不在(-1,1)内.仅(D)入选.
注:命题1.1.7.1 若f’(a)>0(或f’(a)<0),又f’(x)在x=a处连续,则存在δ>0,使f(x)在(a-δ,a+δ)内单调增加(或单调减少).
转载请注明原文地址:https://jikaoti.com/ti/ojBRFFFM
0
考研数学三
相关试题推荐
函数f(x)=(x2+x一2)|sin2πx|在区间上不可导点的个数是()
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数;(Ⅱ)求f(x)的值域。
已知齐次线性方程组同解,求a,b,c的值。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0()
设A为n阶实对称矩阵,下列结论不正确的是().
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
(2007年)设函数f(x)在x=0连续,则下列命题错误的是()
(2010年)箱中装有6个球,其中红、白、黑球的个数分别为1,2,3个,现从箱中随机地取出2个球,记X为取出的红球个数,Y为取出的白球个数。(Ⅰ)求随机变量(X,Y)的概率分布;(Ⅱ)求Cov(X,Y)。
随机试题
肺石棉沉着病的病变特点不包括()。
患者,女,37岁。右侧面部发作性电击样疼痛3个月,临床拟诊三叉神经痛。若对其采用肠线埋藏治疗,该疗法属于
根据民事诉讼法律制度规定,下列有关侦查终结的说法中,错误的是()。
某公司是一家生产家用电器的民营企业,面对激烈的全球市场竞争,他们认识到质量已成为竞争的底线,公司决定全面开展“质量领先”活动,活动的第一步是通过全员培训,在全公司范围内达成质量的共识。依照ISO9000标准的定义,质量是“一组固有特性满足要求的程度”,
强调民间音乐在音乐教育中的重要地位,重视以歌唱作为音乐教育的基本手段,并且创设了一套手势帮助学生理解音级关系的音乐教育家是()。
《中华人民共和国义务教育法》规定由()为盲、聋哑和弱智的儿童、少年举办特殊教育学校。
2,3,7,19,136,()
有一项实验的内容是:受试者被要求从一大堆抽象的图样中识别出一个样式,然后选择另一种图样来完善这个样式。实验的结果令人吃惊,在实验中表现最出色的受试者正是那些脑神经细胞耗能最少的人。如果以下哪项为真,最能对上述陈述中表面上的矛盾现象做出解释?
历史唯物主义把社会意识理解为()。
下面不能作为结构化方法软件需求分析工具的是
最新回复
(
0
)