首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. 设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
admin
2018-04-18
43
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
设ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
s
线性无关.
选项
答案
因为r[*]=n,所以方程组[*]X=0只有零解,从而方程组AX=0与BX=0没有 非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/oWdRFFFM
0
考研数学二
相关试题推荐
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
若0<x1<x2<2,证明
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在f∈(0,1),使得f(ξ)=1-ξ;
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
证明函数y=x-ln(1+x2)单调增加.
随机试题
肩部的最高点为
在WindowsXP中,()窗口的大小不可改变。
专用发票适用于()。
个人贷款的签约流程包括()。
事务所应当对一切合理依赖或使用其出具的不实审计报告而受到损失的利害关系人承担赔偿责任,这些赔偿责任是()。
concernedincontributesA.dotheirjobs(62)______theirownwayB.Asfarasincreasingproductivityis(63)______C.howmuch
简述民事、行政枉法裁判罪与徇私枉法罪的区别。
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是方程组Ax=0的一个基础解系,A*x=0的基础解系为()
在表结构为(职工号,姓名,工资)的表Employee中查询职工号的第5位开始的4个字符为“0426”职工情况,正确的SQL命令是()。
最新回复
(
0
)