首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)-f(x2)|<
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)-f(x2)|<
admin
2019-03-21
20
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)-f(x
2
)|<
选项
答案
联系f(x
1
)-f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
-x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)-f(x
2
)|=|f’(ξ)(x
1
-x
1
)|=|f’(ξ)||x
2
-x
1
|<[*] 2)若x
2
-x
1
≥[*],当0<x<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)-f(x
2
)|=|[f(x
1
)-f(0)]-[f(x
2
)-f(1)]|≤|f(x
1
)-f(0)|+|f(1)-f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1-x
2
)|<x
1
+(1-x
2
)=1-(x
2
-x
1
)≤[*] ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)-f(x
2
)|=|f(0)-f(x
2
)|=|f(1)-f(x
2
)|=|f’(η)(1-x
2
)|<[*] ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)-f(x
2
)|=|f(x
1
)-f(1)|=|f(x
1
)-f(0)|=|f’(ξ)(x
1
-0)|<[*] 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)-f(x
2
)|<[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/oJLRFFFM
0
考研数学二
相关试题推荐
设A是n阶矩阵,α是n维列向量,若则线性方程组()
证明:当x>1时
设f(x)在[0,b]连续,且f(x)>0,∫abf(x)dx=A.D为正方形区域:a≤x≤b,a≤y≤b,求证:(Ⅰ)I=;(Ⅱ)I≥(b-a)(b-a+A).
设有微分方程y’-2y=φ(x),其中φ(x)=,试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设f(x)在(a,b)上有定义,c∈(a,b),又f(x)在(a,b)\{c}连续,c为f(x)的第一类间断点.问f(x)在(a,b)是否存在原函数?为什么?
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
将长为a的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使两段面积之和最小,问两段铁丝各长多少?
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=___________。
随机试题
下列对逆转录的叙述错误的是
王检察官的下列哪一行为符合检察官职业道德的要求?(2011年卷一48题)
()发布的《城镇地籍调查规程》规定了《城镇土地分类及含义》,城镇地籍调查及村庄地籍调查应用的是城镇土地分类体系。
下列关于即期外汇交易的说法,正确的有()
某企业2012年2月发生如下经济业务:(1)本月销售甲产品100件,每件400元,增值税税率为17%,款项暂未收到。(2)公司本月应缴纳城建税为700元,教育费附加为300元。(3)出售闲置的材料,售价10000元,增值税率17%,款项已经收存银行(
儿童自我意识发展的第一个飞跃的基本标志是()。
ForanincreasingnumberofstudentsatAmericanuniversities,Oldissuddenlyin.Thereasonisobvious:thegrayingofAmericame
研究人员将人体标本低温冰冻后,用工业铣床逐层铣切、逐层照相,输入计算机获取人体连续横断面图像,然后进行人体结构的三维重建。通过计算机技术将采集的数据编辑成可解剖的数字人体,其断面与可解剖的整体人相结合,并且所有结构可以单独显示和旋转,实现了可视化虚拟人体解
The21stcenturyisacenturyofbiotechrevolution.【F1】Yetbeforehumanbeingsareabletofullyenjoythefruitsofthebiotec
Allovertheworld,forestsaresafeguardingthehealthoftheplanetitself.Theydothis【C1】______protectingthesoil,providi
最新回复
(
0
)