首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设e<a<b<e2,证明ln2b—ln2a>4(b一a)/e2.
[2004年] 设e<a<b<e2,证明ln2b—ln2a>4(b一a)/e2.
admin
2019-04-05
38
问题
[2004年] 设e<a<b<e
2
,证明ln
2
b—ln
2
a>4(b一a)/e
2
.
选项
答案
因待证的不等式中含有两函数之差,可用拉格朗日中值定理证明,也可用单调性证明,还可用柯西中值定理证之. 证一 对ln
2
x在[a,b]上应用拉格朗日中值定理,得ln
2
b—ln
2
a=[*](b一a),a<ξ<b. 设φ(t)=[*],则φ′(t)=[*],当t>e时,φ′(t)<0,所以φ(t)单调减少,从而φ(ξ)>φ(e
2
),即 [*], 故 ln
2
b—ln
2
a>[*] 证二. 设φ(x)=ln
2
x-4x/e
2
,则φ′(x)=2[*],φ″(x)=2[*],所以当x>e时, φ″(x)<0,故φ′(x)单调减少,从而当e<x<e
2
时,φ′(x)>φ′(e
2
)=4/e
2
—4/e
2
=0,即当 e<x<e
2
时,φ(x)单调增加.因此当e<a<b<e
2
时,cp(b)>φ(a),即 ln
2
b一(4/e
2
)b>ln
2
a一(4/e
2
)以, 故 ln
2
b—ln
2
a>4(6一a)/e
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/oBLRFFFM
0
考研数学二
相关试题推荐
求微分方程y"+4y’+4y=eax的通解,其中a是常数.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
积分=()
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
(2012年)曲线y=渐近线的条数为【】
[2002年]设0<a<b,证明不等式.
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
A/氨苄西林B/多黏菌素C/罗红霉素D/氧氟沙星E/磺胺类干扰细菌细胞壁合成
成釉细胞瘤易复发的类型有
痛风的首发症状是对痛风有诊断性治疗价值的是
施工企业在编制企业定额时,应当依据该企业的技术能力和管理水平,并以( )为参照和指导。
工程项目的安全检查的注意事项包括()。
普通股每股收益公式是( )。
下列关于教师教学效能感的描述,正确的是()。
所有切实关心教员福利的校长,都被证明是管理得法的校长;而切实关心教员福利的校长,都首先把注意力放在解决中青年教员的住房上。因此,那些不首先把注意力放在解决中青年教员住房上的校长,都不是管理得法的校长。为使上述论证成立,以下哪项必须为真?
Whatdoesthepencilcountingexperimentsuggest?
MessagetoyoungChineseinthe21stcenturyFundamentalSciencehasprovideduswithanincreasinglydetailedandaccurate
最新回复
(
0
)