首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。 教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
admin
2018-05-10
35
问题
“三角形的中位线”是初中学习三角形知识点中必不可少的内容。对学生的要求是必须了解三角形中位线的概念,熟练掌握三角形中位线定理的证明和有关应用。
教学过程(只要求写出新课导入和新知识探究、巩固、应用等)及设计意图。
选项
答案
教学过程 ①一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书) (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。) 学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形。将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。 问题:你有办法验证吗? ②一种实验——课堂因你而生动 学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。 引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢? ③一种探索——课堂因你而鲜活 师:把连接三角形两边中点的线段叫作三角形的中位线。(板书) 问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言) 学生的结果如下:DE//BC,DF//AC,EF//AB,AE=EC,BF=FC,BD=AD,△ADE≌△DBF≌△EFC≌△DEF,DE=0.5BC,DF=AC,EF=0.5AB… 猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书) 师:如何证明这个猜想的命题呢? 生:先将文字问题转化为几何问题然后证明。 已知:DE是ABC的中位线,求证:DE//BC、DE=0.5BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论,得出几种常用方法,大致思路如下) 生1:延长DE到F使EF=DE,连接CF 由△AD_E≌△CFE(SAS) 得AD=FC从而BD=FC 所以,四边形DBCF为平行四边形得DF=BC,可得DE=0.5BC(板书) 生2:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即ADE≌CFE,可得BD=CF,得DBCF为平行四边形。 得DF=BC可得DE=0.5BC 生3:延长DE到F使DE=EF,连接AF、CF、CD,可得AD=CF 得DB=CF 得DF=BC 可得DE=0.5BC 生4:利用△ADE~△ABC且相似比为1:2 可得DE=0.5BC 师:很好,好极了! ④一种思考——课堂因你而添彩 问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段。但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分。(学生交流、探索、思考、验证) ⑤一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后地回答,课堂气氛活跃) ⑥一句总结——课堂因你而彰显无穷魅力 学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业) ⑦课后反思 本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索一发现一猜想一证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
解析
转载请注明原文地址:https://jikaoti.com/ti/ntz9FFFM
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
网络反腐的成效被形象地称为“小鼠标绊倒大贪官”。近日,为鼓励广大网民依法如实举报违纪违法行为,回应网民对反腐倡廉领域热点问题的关注,人民网、新华网等主流网络同步推出网络“举报监督专区”。“举报监督专区”的设立()。①体现了人民民主的广泛性②推
在发达国家,工资一般占企业运营成本的50%左右,而在中国还不到10%,在发达国家劳动报酬在国民收入中所占的比重一般在55%以上,在中国则不到42%,并呈现逐年下降的趋势,这给我们的启示有()。①要保证企业收入在初次分配中占的比重合理②建立企业职工工
“上班能拼车、在家能看病、一条微信登门洗衣……”,近年来,与互联网有关的商业、服务业等新业态高速发展,但“无序竞争、网络欺诈、隐私侵权”等问题也让人们对新业态产生质疑。这要求我们()。①分清主流和支流,但不忽视支流②密切关注实际,敢于破除成规陈说
某教师在讲授“合理利用网络”时,为了帮助学生形成网络交往的正确观念和行为习惯,设计了“微信红包抢不抢”的教学情境,引导学生在价值冲突中识别观点。这体现思想品德课程的根本特点是()。
人们常用“权威合理化”与“公众参与化”这两个指标,来衡量一个国家的政治现代化程度。对公众而言,只有理性参与公共事务,才能涵养“无穷的远方、无数的人们都与我有关”的公共精神,这本身就是最好的民主演练;对政府而言,以制度渠道海纳公众的“参与百川”,在公共认同的
春秋战国时期,社会经济发展比现在落后,但当时诸子峰起、百家争鸣,是中华文化史上的一个黄金时代。《孙子兵法》至今仍为兵家经典,甚至被应用于当代企业管理。这一事实主要说明()。
设随机变量X的数学期望|E(X)|<+∞,下列等式中不恒成立的是()。
如下图所示,设0<a<b,函数f(x)在[a,b]上连续,在(a,b)可微且f(x)>0,f(x)=f(b)。设l为绕原点O可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点A(ζ,f(ζ))上,从直观上看。证明函数F(x)=在ζ处取得最大
方程组,λ为何值时,有解,若有求其解;λ为何值时无解,请解释说明。
袋子中有70个红球,30个黑球,从袋子中连续摸球两次,每次摸一个球,而且是不放回的球摸球:(1)求两次摸球均为红球的概率;(2)若第一次摸到红球,求第二次摸到黑球的概率。
随机试题
学生正在教室聚精会神地听讲,突然从教室外闯进来一个人,这时大家不约而同地把视线指向他,这种心理活动称作【】
铁在人体的吸收部位主要是
生气之源的是()。
华康公司的净资产是否符合发行公司债券的条件?为什么?该公司发行债券后,决定分立,该分立决议是否应当告知债权人,债权人能否要求提前清偿债务或要求提供担保?
由社会劳动生产率的提高和科学技术的进步引起的固定资产原始价值贬值,称为()。
黄同学在做阅读题的时候,习惯直接带着问题去看材料。这种元认知策略是()。
2003年1月22日,公安部发布了加强公安机关内部管理的“五条禁令”。禁令规定,严禁携带枪支饮酒,违者予以辞退;造成严重后果的,予以开除。( )
《凡尔赛条约》中,战胜国以()方式处置德国的全部海外殖民地。
在一项噪声污染与鱼类健康关系的实验中,研究人员将已感染寄生虫的孔雀鱼分成短期噪声组、长期噪声组和对照组。短期噪声组在噪声环境中连续暴露24小时,长期噪声组在同样的噪声中暴露7天,对照组则被置于一个安静环境中。在17天的监测期内,该研究人员发现,长期噪声组的
TheEarth’sdailyclock,measuredinasinglerevolution,istwenty-fourhours.Thehumanclock,【B1】______,isactuallyabouttw
最新回复
(
0
)