(2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f’-

admin2018-06-30  29

问题 (2009年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
    (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f’-(0)存在,且f-(0)=A.

选项

答案(I)取[*] 由题意知F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得[*]即 f(b)一f(a)=f’(ξ)(b一a). (Ⅱ)对于任意的t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*] 由于[*]且当t→0-时,ξ→0-,所以[*]故f’-(0)存在,且f’-(0)=A.

解析
转载请注明原文地址:https://jikaoti.com/ti/nf2RFFFM
0

最新回复(0)