首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3为三个线性无关的向量组,已知Aα1=2α1+α2+α3 ,Aα2=3α1-α3,Aα3=-α3. (Ⅰ)求|A*+2E|; (Ⅱ)判断A是否可相似对角化,说明理由.
设A为3阶矩阵,α1,α2,α3为三个线性无关的向量组,已知Aα1=2α1+α2+α3 ,Aα2=3α1-α3,Aα3=-α3. (Ⅰ)求|A*+2E|; (Ⅱ)判断A是否可相似对角化,说明理由.
admin
2021-03-16
43
问题
设A为3阶矩阵,α
1
,α
2
,α
3
为三个线性无关的向量组,已知Aα
1
=2α
1
+α
2
+α
3
,Aα
2
=3α
1
-α
3
,Aα
3
=-α
3
.
(Ⅰ)求|A
*
+2E|;
(Ⅱ)判断A是否可相似对角化,说明理由.
选项
答案
(Ⅰ)令P=(α
1
,α
2
,α
3
),且P可逆, 由Aα
1
=2α
1
+α
2
+α
3
,Aα
2
=3α
1
-α
3
,Aα
3
=-α
3
得 AP=P[*],或P
-1
AP=[*]=B,即A~B, 由|λE-B|=[*]=(λ+1)
2
(λ-3)=0得 矩阵B的特征值为λ
1
=λ
2
=-1,λ
3
=3, 从而矩阵A的特征值为λ
1
=λ
2
=-1,λ
3
=3, 由|A|=3得A
*
的特征值为-3,-3,1,则A
*
+2E的特征值为-1,-1,3, 故|A
*
+2E|=3. (Ⅱ)-E-B→E+B=[*] 由r(-E-B)=2得矩阵B不可相似对角化,故A不可相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/nZlRFFFM
0
考研数学二
相关试题推荐
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,-1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=______.
设n阶矩阵则|A|=___________.
已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1-α2),B=(α1,α2).若|A|=6,|B|=_______.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
求极限=_______.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
极限().
设当x→0时,(1一cosx)In(1+x2)是比xsinxn高阶的无穷小,而xsinxn是tt(ex2一1)高阶的无穷小,则正整数n等于()
当χ→0时,下列四个无穷小中哪一个是比其它几个更高阶的无穷小量【】
设函数f(x)=secx在x=0处的2次泰勒多项式为1+ax+bx2,则()
随机试题
简述行政监督的特点。
胸部摄影,FFD选用180cm的原因是避免因
患者,男性,23岁,刷牙时牙龈出血半年。检查:全口牙牙石(+)~(++),牙面有色素,牙龈缘及龈乳头轻度水肿,色略红,探诊后牙龈出血,探诊深度3mm,未探查到附着丧失。最可能的诊断是
张某将自己的房屋抵押给甲银行,并办理了抵押登记。下列说法正确的有()。
纳税人在应纳税凭证上未贴或少贴印花税票的,税务机关除追缴其不缴或者少缴的税款、滞纳金外,并处()的罚款。
根据《证券法》的规定,公开发行公司债券筹集的资金,必须用于核准的用途,不得用于弥补亏损和非生产性支出。()
有许多政策,在理论上、原则上无懈可击,论证也周详严密,但忽视具体的实施细则,为某些单位和个人寻找对策、钻空子,造成了可乘之机。因而:( )。
统计表明,美国亚利桑那州死于肺病的人的比例大于其他的州死于肺病的人的比例,因此亚利桑那州的气候更容易引起肺病。以下哪项最能反驳上述论证?
盗窃信用卡并使用的行为()
Whatwillthewomando?
最新回复
(
0
)