首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
admin
2018-08-03
23
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
A≠O.A
T
=A,1≤r(A)=r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩.故矩阵A只有一个非零特征值,而有n—1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向瞳可取为(设a
1
≠0): ξ
1
=(一[*],1,0,…,0)
T
,ξ
2
=(一[*],0,1,…,0)
T
,…,ξ
n—1
=(一[*],0,0,….1)
T
;属于特征值λ
n
=[*]a
i
2
的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有P
—1
AP=diag(0,0,…,0,[*]a
i
2
)对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]a
i
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/nV2RFFFM
0
考研数学一
相关试题推荐
设=A,证明:数列{an}有界.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
已知a23a31aija64a56a15是6阶行列式中的一项,试确定i,j的值及此项所带符号.
随机试题
联系实际阐述学校美育的主要任务。
Acollegeoruniversity’sinternationalstudentofficeisagoodplace【C1】______gettingtoknowtheschoolandthecountry.Let
关于鼻唇(鼻牙槽)囊肿描述哪项是错误的
成人呼吸窘迫综合征(ARDS)的诊断依据是
强调人格差异是主要病因的是强调刺激和认知差异是主要病因的是
气不内守,称为气降不及,称为
基于传统安全人机工程学理论,关于人与机器特性比较的说法,正确的是()。
下列各项中,属于构成比率分析法指标的是()。
根据资源税法律制度的规定,下列各项中,属于资源税征税范围的有()。
在整数的补码表示法中,以下说法正确的是()。
最新回复
(
0
)