首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1,α1,α1为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α1,α3线性无关.
设A为n阶矩阵,α1,α1,α1为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α1,α3线性无关.
admin
2017-12-31
27
问题
设A为n阶矩阵,α
1
,α
1
,α
1
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
1
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
得(A-E)α
1
=0; 由Aα
1
=α
1
+α
2
得(A-E)α
2
=α
1
;由Aα
3
=α
2
+α
3
得(A-E) α
3
=α
2
, 令 k
1
α
1
+k
2
α
1
+k
3
α
3
=0, (1) (1)两边左乘A-E得 k
2
α
1
+k
3
α
2
=0, (2) (2)两边左乘A-E得k
3
α
1
=0,因为α
1
≠0,所以k
3
=0,代入(2),(1)得k
1
0,k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/nSKRFFFM
0
考研数学三
相关试题推荐
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相:互独立,若z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设矩阵,且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[-1,-1,1]T,求a,b,c及λ0的值.
设有矩阵Am×n,Bn×m,Em+AB可逆.验证:En+BA也可逆,且(En+BA)-1=En—B(Em+AB)-1A;
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.证明:,η∈(a,b),使得
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形。
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
A.春末至秋初捕捉,置沸水或沸盐水中,煮至全身僵硬,阴干B.夏秋两季捕捉,洗净,用沸水烫死,晒干C.去掉贝壳,晒干D.春、夏二季捕捉,用竹片插入头尾,绷直,干燥E.夏季捕捉,及时剖开腹部,除去内脏及泥沙,洗净,晒干水蛭的采收加工方法(
曲线y=cosx,x∈[0,π/2]与两坐标轴所围成的面积被曲线y=asinx及y=nsinx(a>b>0)三等分,求a,b的值.
超声检查测量宫颈各径线,正常值是
下列哪种情况会导致病理性高血糖,除外
A.CD3B.CD19C.KIRD.MHC-ⅡE.IL-2NK细胞的表面分子
用于甲烷混合气体和煤尘、有爆炸危险的井中,作为煤矿井下综合机械化采掘设备的配电设备,指的是()。
下列各项中,不属于注册会计师编制审计工作底稿目的的是()。
通常在一门课程或教学活动结束后进行,而且是对一个完整的教学过程进行测评的评价叫作()。
下列行为中构成侵占罪(不考虑数额)的是()
目录文件中所存放的信息是______。
最新回复
(
0
)