设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y-f(x),=0,x=1,y=0围成的平面区域绕z轴旋转一周所得的旋转体体积最小,求f(x).

admin2016-09-12  23

问题 设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y-f(x),=0,x=1,y=0围成的平面区域绕z轴旋转一周所得的旋转体体积最小,求f(x).

选项

答案由f’(x)-f(x)=a(x-1)得 f(x)=[a∫(x-1)e∫-1dxdx+C]e-∫-dx=Cex-ax, 由f(0)=1得C=1,故f(x)=ex-ax. [*] 由V’(a)=[*],所以当a=3时,旋转体的体积最小,故f(x)=ex-3x.

解析
转载请注明原文地址:https://jikaoti.com/ti/nJzRFFFM
0

最新回复(0)