设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有( ).

admin2019-07-10  36

问题 设n维列向量α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,向量尼不可由α1,α2,α3线性表示,则对任意常数k,必有(    ).

选项 A、α1,α2,α3,kβ1+β2线性无关
B、α1,α2,α3,kβ1+β2线性相关
C、α1,α2,α3,β1+kβ2线性无关
D、α1,α2,α3,β1+kβ2线性相关

答案A

解析 设有一组数字λ1,λ2,λ3,λ4,满足λ1α1+λ2α2+λ3α3+λ4(kβ1+β2)=0,
    若λ4=0,则有条件λ1=λ2=λ3=0,从而推出α1,α2,α3,kβ1+β2线性无关.
    若λ4≠0,则kβ1+β2可由α1,α2,α3线性表示,而β1可由α1,α2,α3线性表示,故β2也可由α1,α2,α3线性表示,矛盾,所以,λ4=0,从而A正确.对于其余三个选项,也可用排除法.
    当k=0时,可排除B、C;当k=1时,可排除D.
    故应选A.
转载请注明原文地址:https://jikaoti.com/ti/nInRFFFM
0

随机试题
最新回复(0)