首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一个基因问题,这个问题中一个基因有2个不同的染色体,一个给定的总体中的每一个个体都必须有三种可能基因类型中的一种.如果从父母那里继承染色体是独立的,且每对父母将每一染色体传给子女的概率是相同的,那么三种不同基因类型的概率p1,p2和p3可以用以下形式表
考虑一个基因问题,这个问题中一个基因有2个不同的染色体,一个给定的总体中的每一个个体都必须有三种可能基因类型中的一种.如果从父母那里继承染色体是独立的,且每对父母将每一染色体传给子女的概率是相同的,那么三种不同基因类型的概率p1,p2和p3可以用以下形式表
admin
2019-01-24
36
问题
考虑一个基因问题,这个问题中一个基因有2个不同的染色体,一个给定的总体中的每一个个体都必须有三种可能基因类型中的一种.如果从父母那里继承染色体是独立的,且每对父母将每一染色体传给子女的概率是相同的,那么三种不同基因类型的概率p
1
,p
2
和p
3
可以用以下形式表示:
p
1
=θ
2
,p
2
=2θ(1-θ),p
3
=(1-θ)。,其中参数0<θ<1未知.基于一个随机样本中拥有每种基因个体的观察值N
1
,N
2
,N
3
,总的样本容量为n.某次测试中,N
1
=10,N
2
=50,N
3
=40.
(Ⅰ)可以利用事件出现的频率估计事件发生的概率,求θ的估计值,请问估计值是否唯一?
(Ⅱ)求θ的最大似然估计值.
选项
答案
(Ⅰ)利用事件出现的频率估计事件发生的概率,比如 [*] 解得相应的估计量为[*],对应的估计值为 [*] 所以估计值不唯一. (Ⅱ)似然函数为 L(θ)=(θ
2
)
N
1
[2θ(1-θ)]
N
2
[(1-θ)
2
]
N
3
. 取对数 ln L(θ)=2N
1
lnθ+N
2
ln2+N
2
lnθ+N
2
ln(1-θ)+2N
3
ln(1-θ) =N
2
ln2+(2N
1
+N
2
)lnθ+(N
2
+2N
3
)ln(1-θ), 对θ求导有[*] 其中[*]为样本容量.所以参数θ的最大似然估计量为[*] 当N
1
=10,N
2
=50,N
3
=40时,n=100,此时[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/nC1RFFFM
0
考研数学一
相关试题推荐
设f(x)在(一1,1)内具有二阶连续导数,且f"(x)≠0.证明:(1)对于任意的x∈(一1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立.(2).
已知随机变量X的概率密度(I)求分布函数F(x);(II)若令Y=F(X),求Y的分布函数FY(y)·
设总体X的密度函数为(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设曲线y=lnx与y=k相切,则公共切线为_________.
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设级数(an-an-1)收敛,且绝对收敛.
求不定积分.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
计算定积分∫01.
随机试题
物理常数测定项目,《中国药典》未收载的是
下列各项中,属于存款人申请开立基本存款账户证明文件的有()。
下列会计处理中,不正确的是()。
巴甫洛夫认为,人类特有的条件反射系统是()
老虎窗,坡屋顶,崭新的立面,七彩的灯光,“平改坡”——上海为老式多层住宅“戴帽穿衣”的工程,经过两年多的实践已成为都市新的风景。以下最能复述这段话主要意思的是()。
有人认为:“三国两晋南北朝时期,经济长期破坏,政局动荡不安,长期分裂割据。人心涣散,实是我国古代历史的黑暗时代。”这种观点否定了()。①民族融合的作用②江南经济的发展③从分裂走向统一是这一时期历史的总趋势④科技文化的
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下而的操作。注意:以下的文件必须都保存在考生文件夹下。小赵是一名参加工作不久的大学生。他习惯使用Excel表格来记录每月的个人开支情况,在2013年底,小赵将每个月各类支出
USEOFUNIVERSITYGROUNDSBYVEHICULARTRAFFICTheUniversitygroundsareprivate.TheUniversityautho
[A]affect[B]consistency[C]contrary[D]contribute[E]decrease[F]dominant[G]engaged[H]essentially[I]extremel
Whichofthefollowingismentionedwithregardto"Needle"?
最新回复
(
0
)