首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解. (I)求这个方程和它的通解; (Ⅱ)设y=y(x)是该方程满足y(0
admin
2019-06-06
42
问题
已知y
1
*
(x)=xe
-x
+e
-2x
,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.
(I)求这个方程和它的通解;
(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求∫
0
+∞
y(x)dx.
选项
答案
(I)由线性方程解的叠加原理→ y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根λ=一2相应的特征方程为 (λ+2)
2
=0,即λ
2
+4λ+4=0. 原方程为 y’’+4y’+4y=f(x). ① 由于y
*
(x)=xe
-x
是它的特解,求导得 y
*
’(x)=e
-x
(1一x), y
x
’’(x)=e
-x
(x一2). 代入方程①得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x) → f(x)=(x+2)e
-x
→原方程为y’’+4y’+4y=(x+2)e
-x
,其通解为 y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数. (Ⅱ)[*]C
1
,C
2
,方程的[*]解y(x)均有 [*] 不必由初值来定C
1
,C
2
,直接将方程两边积分得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/n4LRFFFM
0
考研数学二
相关试题推荐
已知二维随机变量(X,Y)的概率密度为f(x,y)=求(X,Y)的联合分布函数.
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设f(χ)=sin3χ+∫-ππχf(χ)dχ,求∫0πf(χ)dχ.
设线性方程组求线性方程组(Ⅰ)的通解;
求极限:
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A.
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ(u)≠1.求
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数。
微分方程xdy+2ydx=0满足初始条件y|x=2=1的特解为()
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.设,求出可由两组向量同时线性表示的向量.
随机试题
公证当事人的条件包括
治疗白血病的措施以下哪项不正确
下列可以引起功血的原因,应除外
鉴别再障与急性白血病的最主要检查是
内皮指的是哪处的上皮
下列有关《物权法》对土地登记的规定,描述错误的有()。
下列各类计算机程序语言中,不属于高级程序设计语言的是()。
A、Hedoesn’thavemuchtimefortennis.B、He’senthusiasticabouthisnewcourses.C、Heplaystennisbetterthanshedoes.D、He’
Childrenfrompoorfamiliesarealreadyayearbehindinvocabularytestswhentheystartschool,accordingtoaresearchpublis
PresidentBushandthe9/11Attacks2000ElectionA)AsClinton’spresidencycametoaclose,Democra
最新回复
(
0
)