首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有 |f’(c)|≤2a+b.
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有 |f’(c)|≤2a+b.
admin
2019-05-08
45
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f"(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
|f’(c)|≤2a+
b.
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]∈(0,1),有 f(x)=f(c)+f’(c)(x一c)+[*]f"(ξ)(x一c)
2
, (*) 其中ξ=c+θ(x一c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(一c)+[*]f"(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1一c)+[*]f"(ξ
2
)(1一c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)一f(0)=f,(c)+[*][f"(ξ
2
)(1一c)
2
一f"(ξ
1
)c
2
]. 从而f’(c)=f(1)一f(0)+[*][f"(ξ
1
)c
2
一f"(ξ
2
)(1一c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1一c)
2
≤1—c,c
2
≤c.于是(1一c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f’(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://jikaoti.com/ti/mvnRFFFM
0
考研数学三
相关试题推荐
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本,为样本均值。(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量。
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,S2,则可以作出服从自由度为n的χ2分布的随机变量是()
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x).
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:(b-a)f≤∫abf(x)dx≤[f(a)+f(b)]
设求矩阵A可对角化的概率.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设且α,β,γ两两正交,则a=__________,b=___________.
随机试题
已知被评估机器设备的价值与功能之间存在线性关系,该机器设备仅生产甲产品,年产量为720件。由于该型号的设备已停产,评估人员在市场上寻找到功能类似的全新设备,年产量为800件,价格为11.5万元。则被评估设备的重置成本为【】
A.unnecessaryB.completeC.lightestD.safeE.flammableF.reactiveMRImaymakeoperatingonthepatient______.
下列哪一种情况下可发生冠状动脉明显舒张
血浆晶体渗透压的主要参与形成者是血浆胶体渗透压的主要参与形成者是
申请设立保险公估机构时其持有《保险公估从业人员资格证书》的员工人数应当在( )以上。
研究者必须知道每次观察的重点和方式,特别是要按照研究的目的认真选择典型观察对象、环境条件和工具。这是观察研究的()原则。
下列命题正确的是().
Youshouldspendabout20minutesonQuestions27-40,whicharebasedonReadingPassage3below.SourceofKnowledgeAWhatcou
A、Helikesitmuchbetter.B、Hedoesn’tlikeit.C、Hedoesn’tknow.D、Hepreferstheblueone.A观点态度题。对话中女士对男士说想穿蓝色裙子去参加晚会,可男士建议
Ishallhavearoommateinthehouseafterallthese______years.
最新回复
(
0
)