首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
已知a是常数,且矩阵可经初等列变换化为矩阵 (I)求a; (Ⅱ)求满足AP=B的可逆矩阵P.
admin
2019-08-01
42
问题
已知a是常数,且矩阵
可经初等列变换化为矩阵
(I)求a;
(Ⅱ)求满足AP=B的可逆矩阵P.
选项
答案
(I)由题意知,|A|=|B|,且r(A)=r(B).由于 [*] 因此可得a=2. (Ⅱ)求满足AP=B的可逆矩阵P,即求方程组Ax=B的解. [*] 令P=(ξ
1
,ξ
2
,ξ
3
),B=(β
1
,β
2
,β
3
),x=(x
1
,x
2
,x
3
), 则可得方程组Ax
1
=β
1
的基础解系为(一6,2,1)
T
,特解为(3,一1,0)
T
; 得方程组Ax
2
=β
2
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
; 得方程组Ax
3
=β
3
的基础解系为(一6,2,1)
T
,特解为(4,一1,0)
T
. 从而可知三个非齐次方程组的通解为 ξ
1
=x
=k
1
(一6,2,1)
T
+(3,一1,0)
T
; ξ
2
=x
2
=k
2
(一6,2,1)
T
+(4,一1,0)
T
; ξ
3
=x
3
=k
3
(一6,2,1)
T
+(4,一1,0)
T
. [*] 由P为可逆矩阵,即|P|≠0,可知k
2
≠k
3
.因此 [*]k
1
,k
2
,k
3
为任意常数,且k
2
≠k
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/miERFFFM
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限证明:(Ⅰ)设A<B,则对∈(A,B),∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)有界.
讨论下列函数的连续性并判断间断点的类型:
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
曲线(x-1)3=2上点(5,8)处的切线方程是_______.
求曲线гx=a(t-sint),y=a(1-cost)(0≤t≤2π)及y=0所围图形绕x轴旋转一周所得曲面的面积S.
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
(1998年试题,六)计算积分
随机试题
成果:奋斗:共享
关于铝合金外窗框与砌体墙体固定方法,下列各项错误的是()。
背景达海制药厂机电安装工程项目由A单位实施工程总承包,其与某劳务公司签订了劳务分包合同,约定该劳务公司安排40名农民工做力工,进行基础地基处理和材料搬运工作。进场前进行了安全教育。地基工程结束后,准备工艺设备吊装作业,吊装方案详细可靠,具体内容
发行股票数量在3亿股以上的,发行人及其主承销商可以在发行方案中采取超额配售选择权。()
M投资者预计A股票将要跌价,于2012年4月1日与S投资者订立卖出合约,合约规定有效期为3个月,M投资者可按现有价格10元卖出A股票1000股,期权费为每股0.5元。2012年5月1日A股票价格下跌至每股8元(不考虑税金与佣金等其他因素)。关于S投资者
以下各项中,( )属于公司债券的发行人。
《“十三五”旅游业发展规划》指出要加快建立以()评价为主的旅游目的地评价机制。
一般而言,()是公司的执行机构。
政治上层建筑和思想上层建筑的关系是()。
下列命令中,修改库文件结构的命令是
最新回复
(
0
)