首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.
[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时, β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.
admin
2019-04-28
28
问题
[2004年] 设α
1
=[1,2,0]
T
,α
2
=[1,a+2,-3a]
T
,α
3
=[-1,-b-2,a+2b]
T
,β=[1,3,-3]
T
.试讨论当a,b为何值时,
β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,并求出表示式.
选项
答案
当a≠0且a-b=0,即a=b≠0时,对[A|β]施以初等行变换,有 [*] 可知秩(A)=秩([A|β])=2,故方程组①有无穷多解.其一基础解系只含一个解向量α=[0,1,1]
T
,其一个特解为η=[1-1/a,1/a,0],故以k
1
,k
2
,k
3
为未知数的方程组①的通解为 [k
1
,k
2
,k
3
=η+cα=[1-1/a,1/a,0]
T
+c[0,1,1]
T
=[1-1/a,1/a+c,c]
T
(c为任意常数). 于是β可由α
1
,α
2
,α
3
线性表示,其一般表示式为 β=k
1
α
1
+k
2
α
2
+k
3
α
3
=(1-1/a)α
1
+(1/a+c)α
2
+cα
3
(c为任意常数). 由上式易知,由于c为任意常数,β由α
1
,α
2
,α
3
线性表出的一般表达式,常归结为求关于未知数k
1
,k
2
,k
3
的方程组β=k
1
α
1
+k
2
α
2
+k
3
β
3
的通解.
解析
转载请注明原文地址:https://jikaoti.com/ti/menRFFFM
0
考研数学三
相关试题推荐
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设向量组线性相关,但任意两个向量线性无关,求参数t.
级数的收敛域为______,和函数为______.
判断级数的敛散性.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设A=有三个线性无关的特征向量,求a及An.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
随机试题
以下______是无线传输介质。
原发性肝癌根据大体形态,通常分为以下哪几型
培养志贺菌常用的培养基中含有
外盘大于内盘,通常股价会()
20×8年1月2日,甲公司以发行1200万股本公司普通股(每股面值1元)为对价,取得其母公司控制的乙公司60%的股权,甲公司该项合并及合并后有关交易或事项如下:(1)甲公司于20×8年1月2日控制乙公司,当日甲公司净资产账面价值为35000万元,其中:股
读“台湾人口金字塔图组”,完成下列问题。预测到2031年台湾面临的主要人口问题是()
【材料(大意)】材料一:针对城管管理小贩占道经营的现象,城管进行治理,在此过程中小贩说城管打砸,城管说小贩推搡,不配合执法。材料二:2012年2月27日有消息称常州城管一线执法部门共有12名硕士研究生。帖子一出立即引发网友热议。有人说“
玩具店新进一批成本为40元的玩具,按40%的利润定价出售,售出80%以后,剩下的玩具打折扣,结果获得的利润是原计划的86%,剩下的玩具出售时按定价打了几折?
1979年的《刑法》第158条规定:禁止任何人利用任何手段扰乱社会秩序,扰乱社会秩序情节严重,致使工作、生产、营业和教学、科研无法进行、国家和社会遭受严重损失的,对首要分子处5年以下有期徒刑、拘役、管制或者剥夺政治权利。从结构上看,这一法律规范缺少什么?(
A.divisionB.sufficientC.constantD.depthsE.exteriorF.whereasG.stableH.provedI.e
最新回复
(
0
)