首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得 f’(ξ)=2∫01f(x)dx.
admin
2018-09-20
43
问题
f(x)在[0,1]上有连续导数,且f(0)=0.证明:存在一点ξ∈[0,1],使得
f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上有最小值和最大值,设为m,M,即存在x
1
,x
2
∈[0,1],使f’(x
1
)=m,f’(x
2
)=M: 由拉格朗日中值定理,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)-f(0)=f’(η)x,于是有 f’(x
1
)x=mx≤f(x)=f(x)一f(0)=f’(η)x≤Mx=f’(x
2
)x, 两边积分得 f’(x
1
)∫
0
1
xdx≤∫
0
1
f(x)dx≤f’(x
2
)∫
0
1
xdx, 即[*]f’(x
1
)≤∫
0
1
f(x)dx≤[*]f’(x
2
),故f’(x
1
)≤2∫
0
1
f(x)dx≤f’(x
2
). 因为f’(x)在[0,1]上连续,由介值定理,必存在ξ∈[x
1
,x
2
][*][0,1],或ξ∈[x
2
,x
1
][*][0,1],使 f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://jikaoti.com/ti/mEIRFFFM
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[a,b]上连续且单调增加,证明:∫abxf(x)dx≥∫abf(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)有界,且f’(x)连续,对任意的x∈(一∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:
设S(x)=∫0x|cost|dt.证明:求
设S(x)=∫0x|cost|dt.证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);
设(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
随机试题
关于心功能分级正确的是
下列具有利尿作用的药物是
FIDIC施工合同条件规定,一般分包商的违约行为给业主造成损害而导致索赔事件的发生时,()。
在全国银行问债券市场的债券回购中,非金融机构只能委托结算代理人开展()业务。
据青浦区崧泽古文化遗址考古可知,距今约()年前,已经有最早上海人的聚落。
在教学过程之中,旨在发现学生学习中存在的问题,帮助教师调整和改进教学的评价是()
求助者有两种求助动机:执行性求助和工具性求助。前者是自己不作任何尝试或努力,只想知道答案或让他人代自己完成任务;后者是借助其他人的力量以达到自己解决问题或实现目标的目的。 根据上述定义,下列属于工具性求助的的是:
(2010年江西.72)石油:汽油
宽带综合业务数字网(B—ISDN)的传输速率,最高要达到几十______。一般速率超过______时,要采用光纤技术。
下列关于蓝牙系统的技术指标的描述中,错误的是
最新回复
(
0
)