首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明:方程组的系数矩阵A的秩R(A)=2; (2)求a,b的值及方程组的通解.
admin
2020-06-05
31
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明:方程组的系数矩阵A的秩R(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是非齐次方程组Ax=b的3个线性无关的解,那么α
1
-α
2
,α
2
-α
3
是Ax=0线性无关的解,所以n-R(A)≥2,即R(A)≤2.又矩阵A中有2阶子式[*]≠0,即R(A)≥2,从而R(A)=2. (2)对增广矩阵作初等行变换: [*] 由R(A)=[*]=2知4-2a=0,b+4a-5=0,即a=2,b=﹣3.此时,其通解为 [*] 其中c
1
,c
2
为任意实数.
解析
转载请注明原文地址:https://jikaoti.com/ti/mA9RFFFM
0
考研数学一
相关试题推荐
设A,B是n阶矩阵,则C=的伴随矩阵是
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
直线1:之间的关系是()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设函数f(χ)在[a,b]上连续,在(a,b)内可导且f(a)≠f(b),试证明存在η,ξ∈(a,b),使得
随机试题
A.头痛、呕吐、脑脊液可检出白血病细胞B.寒战、高热、出血并迅速衰竭C.低热、贫血、巨脾D.低热、乏力、颈部淋巴结肿大E.切口不愈合中枢神经系统白血病的临床特点为
结构杆件的基本受力形式有()。
以实物量法编制施工图预算时,资源单价取()。
贷款按期限可分为短期贷款(1年以内,含1年)和中长期贷款(1年以上)。()
关于事业单位长期投资的核算,下列说法中错误的是()。
缺铁性贫血病人发生Plummer-Vinson综合征时的临床特点是
效度
LastweekitemergedthatBAESystems,Europe’sbiggestdefencefirm,andEADS,theownerofAirbusandasmallerdefencebusine
有如下程序:intx=3;d0{x一=2;cout<<x;}while(!(一一x));执行这个程序的输出结果是()。
Americawillneveragainhaveasanationthespiritofadventureasit______beforetheWestwassettled.
最新回复
(
0
)