首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度: (Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式: (Ⅱ)D={(x,y)|x2+y2>0}.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度: (Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式: (Ⅱ)D={(x,y)|x2+y2>0}.
admin
2016-10-26
31
问题
选择常数λ取的值,使得向量A(x,y)=2xy(x
4
+y
2
)
λ
i-x
2
(x
4
+y
2
)
λ
j在如下区域D为某二元函数u(x,y)的梯度:
(Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式:
(Ⅱ)D={(x,y)|x
2
+y
2
>0}.
选项
答案
记A=P(x,y)i+Q(x,y)j,先由(P,Q)为某二元函数u的梯度(即du=Pdx+Qdy)的必要条件[*]定出参数λ. [*]=2x(x
4
+y
2
)
λ
+λ4xy
2
(x
4
+y
2
)λ
-1
, [*]=-2x(x
4
+y
2
)
λ
-λ4x
5
(x
4
+y
2
)λ
-1
. [*]4x(x
4
+y
2
)λ+4λx(x
4
+y
2
)
λ
=0([*]λ=-1. (Ⅰ)由于D={(x,y)|y>0}是单连通,λ=-1是存在u(x,y)使du=Pdx+Qdy的充要条件, 因此仅当λ=-1时存在u(x,y)使(P,Q)为u的梯度. 现求u(x,y),使得du(x,y)=[*]dy. 凑微分法. [*] (*) 则 u(x,y)=arctan[*]+C. (Ⅱ)D={(x,y)|x
2
+y
2
>0}是非单连通区域,[*]((x,y)∈D)不足以保证Pdx+Qdy存在原函数.我们再取环绕(0,0)的闭曲线C:x
4
+y
2
=1,逆时针方向,求出 [*] 其中D
0
是C围成的区域,它关于y轴对称.于是∫
L
Pdx+Qdy在D与路径无关,即Pdx+Qdy,在D存在原函数.因此,仅当λ=-1时A(x,y)=(P,Q)在D为某二元函数u(x,y)的梯度.
解析
转载请注明原文地址:https://jikaoti.com/ti/m8wRFFFM
0
考研数学一
相关试题推荐
[*]
[*]
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
A、低阶无穷小B、高阶无穷小C、等价无穷小D、同阶但不等价的无穷小B
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是().
设α,β为n维单位列向量,P是n阶可逆矩阵,则下列方程组中,只有零解的是()
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问£为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
求解初值问题
随机试题
导游人员在运用道歉语言时,应注意的是()。
有一V形架如图1-7所示。现用量柱进行测量,己知量柱直径D为30mm,测得尺寸A为37.50mm,B为20.00mm,求V形架的V形槽口宽度W为多少。
宫颈癌最常见的为子宫内膜癌恶性程度最高的为
发射光谱分析法是下列哪类测定法的原理
对于城市规划与土地利用总体规划,以下哪项的表述是不正确的?
在《建设工程工程量清单计价规范》中规定,离心式深井泵安装时,其设备质量除本体以外还包括( )的质量。
中年人在记忆加工过程中的一个显著特点是()。
学校体育的功能是学校体育价值的体现,在制定学校体育目标时,首先要考虑到学校体育的目标是否有利于学生身心的发展。()
在软件的分析阶段,常用()来描述业务处理系统的信息来源、存储、处理和去向。
NetWaK操作系统提供三级容错机制。第三级系统容错(SFTⅢ)提供了______。
最新回复
(
0
)