首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
34
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/m2BRFFFM
0
考研数学三
相关试题推荐
α1,α2,α3是四元非齐次线性方程组Aχ=b.的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Aχ=b的通解χ=().
设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn为来自总体X的简单随机样本.记,其中a为常数.若E(T)=λ2,则a=().
已知f′(χ),g′(χ),且f(0)=g(0)=0,试求.
①设α1,α2,…,αs和β1,β2,…,βt都是n维列向量组,记矩阵A=(α1,α2,…,αs),B=(β1,β2,…,βt)证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α1,α2,…,αs)
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1.2,2,1)T+c(1,—2,4,0)T,c任意.记B=(α3,α2,α1,β—α4).求方程组Bx=α1—α2的通解.
设实对称矩阵要使得A的正,负惯性指数分别为2,1,则a满足的条件是________.
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A(a,a2)(a>0).(I)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{-1<X<4}≥a,则a的最大值为().
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
设随机变量X与Y的相关系数为0.5,E(X)=E(Y)=0,E(X2)=E(Y2)=2,则E[(X+Y)2]=________。
随机试题
(非英语类学生必做)IarrivedintheUnitedStates【61】February6,1986,butIremembermyfirstdayherevery【62】Myfriendwaswa
维持机体稳态的主要调节机制是()
捏脊疗法通过对督脉与膀胱经捏拿,达到调整脏腑功能的目的。常用于治疗
复议申请书一般包括()内容。
简述制约课程的主要因素。
【2013-33】1959年,美国科学院召开了改进中小学自然科学教育的会议,从而掀起60年代以加强基础学科教学、编写新教材、注重学科概念与体系为核心的课程改革运动。这场运动所体现的教育思潮是()。
Americaisoneofmanycountrieswherethestategivesaleg-uptomembersofcertainracial,ethnic,orothergroups【C1】______h
报表的数据源不包括()。
某系统结构图如图4-1所示。该系统结构图的最大扇出数是()
AnimalIntelligenceAreAnimalsintelligent?Iftheyare,whichanimalsarethemostintelligent?Thesearenoteasyquestion
最新回复
(
0
)