首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,-3)T,α2(3,0,1)T,α3(9,6,-7)T,β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T.已知r(α1,α2,α3)=r(β1,β2,β3),并且β可用α1,α2,α3线性表示,求a,b.
设α1=(1,2,-3)T,α2(3,0,1)T,α3(9,6,-7)T,β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T.已知r(α1,α2,α3)=r(β1,β2,β3),并且β可用α1,α2,α3线性表示,求a,b.
admin
2016-10-21
31
问题
设α
1
=(1,2,-3)
T
,α
2
(3,0,1)
T
,α
3
(9,6,-7)
T
,β
1
=(0,1,-1)
T
,β
2
=(a,2,1)
T
,β
3
=(6,1,0)
T
.已知r(α
1
,α
2
,α
3
)=r(β
1
,β
2
,β
3
),并且β可用α
1
,α
2
,α
3
线性表示,求a,b.
选项
答案
题中有两个未知数,两个条件.其中第二个条件只涉及未知数b.于是可用它先求出b,再用另一个条件求出a. 因为β
3
可用α
1
,α
2
,α
3
线性表示,所以r(α
1
,α
2
,α
3
,β
3
)=r(α
1
,α
2
,α
3
). (α
1
,α
2
,α
3
|β
3
)=[*] 得r(α
1
,α
2
,α
3
)=2,于是r(α
1
,α
2
,α
3
,β
3
)=2,得b=5. 由条件r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=2,则β
1
,β
2
,β
3
线性相关,|β
1
,β
2
,β
3
|=0. |β
1
,β
2
,β
3
|=[*]=15-a, 得a=15.
解析
转载请注明原文地址:https://jikaoti.com/ti/lxzRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)内连续,且F(x)=∫0x(x-2t)f(t)dt.试证:若f(x)为偶函数,则F(x)也是偶函数。
=________.
利用极限存在准则证明:问本题能否用极限的四则运算法则求解?
求下列极限:
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
设z=z(x,y)是由方程x2+y2-z=ψ(x+y+z)所确定的函数,其中ψ具有2阶导数且ψ’≠-1.求dz.
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S1+S2达到最小,并求出最小值。
在曲线y=x2(x≥0)上某点A处作一切线,使之与曲线以及x轴所围成图形的面积为,试求:由上述所围平面图形绕x轴旋转一周所成旋转体的体积。
A、f(0)是f(x)的极小值B、f(0)是f(x)的极大值C、(0,f(0))是曲线y=f(x)的拐点D、x=0是f(x)的驻点但不是极值点C
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
随机试题
不属于原发性醛固酮增多症的临床表现是
子宫肌瘤的症状主要取决于
A、白昼时时汗出,动则尤甚B、寐中汗出,醒来自止C、冷汗如珠,气息微弱D、咳而汗出,痰黄质稠E、汗出色黄,染衣着色脱汗的特点是
甲电视台经过主办方的专有授权,对篮球俱乐部联赛进行了现场直播,包括在比赛休息时舞蹈演员跳舞助兴的场面。乙电视台未经许可截取电视信号进行同步转播。关于乙电视台的行为,下列哪一表述是正确的?(2014年卷三第18题)
乘坐旅游车旅游时,为避免游客丢失物品,导游人员要:
观察法比较适合于收集()的培训需求信息。
Mostepisodesofabsent-mindedness—forgettingwhereyouleftsomethingorwonderingwhyyoujustenteredaroom—arecausedbya
"(Never)(Ihaveheard)such(athing)inmylife",(said)theoldman.
ValmontIndustries,Inc.isaleadingproduceranddistributorofproductsandservicesfortheinfrastructure(基础设施)andagricultu
Stilettoheelscouldbebannedfromtheworkplacebecauseofhealthandsafetyreasons,accordingtoBritishTradeUnionbosses.
最新回复
(
0
)