首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
admin
2019-11-25
38
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0,由罗尔定理,存在η
1
∈(x,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0,而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0,由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ’(η)=0,而φ’(x)=e
-2x
[f”(x)-3f’(x)+2f(x)]且e
-2x
≠0,所以f”(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/lviRFFFM
0
考研数学三
相关试题推荐
设f(x)在区间(0,1)内可导,且导函数f’(x)有界,证明:级数绝对收敛.
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
设X1,X2,…,Xn为X的简单随机样本,且X具有概率密度求未知参数α的矩估计和最大似然估计.
曲线y=号的凹区间是_______.
若f(x)在点x0处可导,则|f(x)|在点x0处()
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
求极限=_______.
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确的个数为()
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A一E恒可逆。上述命题中,正确的个数为()
在天平上重复称量一重为a的物品.假设各次称量结果相互独立且同服从正态分布N(a,0.22).若以表示n次称量结果的算术平均值,则为使n的最小值不小于自然数___________.
随机试题
此病中医证型是此病所用的方剂是
苏合香入丸、散,每次的用量是
已知点P在Oxy平面内的运动方程,则点的运动为:
甲、乙因合同纠纷申请仲裁。甲、乙各选定一名仲裁员,首席仲裁员由甲、乙共同选定。仲裁庭合议时产生了三种不同意见,仲裁庭应当()作出裁决。
货币政策的内容包括()。
某企业2013年期初营业账簿记载的实收资本和资本公积余额为500万元,当年该企业增加实收资本120万元,新建其他账簿12本,领受专利局发给的专利证1件、税务机关重新核发的税务登记证1件。该企业上述凭证2013年应纳印花税为()。
主张废除班级授课制和教科书,打破传统的学科界限,在教师指导下,由学生自己决定学习目的和内容,在自己设计、自己负责的单元活动中获得有关的知识和能力的教学组织形式是()。
铜在自然界存在于多种矿石中,如:请回答下列问题:工业上以黄铜矿为原料,采用火法熔炼工艺生产铜。该工艺的中问过程会发生反应:2Cu2O+Cu2S6Cu+SO2↑,反应的氧化剂是______。
由幼儿园自行开发和管理的课程是()
Thesystemisdesignedtobeusedinconjunctionwithawordprocessingprogram.
最新回复
(
0
)