首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*X=0的基础解系为( )
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*X=0的基础解系为( )
admin
2019-05-12
22
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)
T
,则A
*
X=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
1
+α
3
。
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
答案
C
解析
方程组Ax=0的基础解系只含一个解向量,所以四阶方阵A的秩r(A)=4—1=3,则其伴随矩阵A
*
的秩r(A
*
)=1,于是方程组A
*
x=0的基础解系含有三个线性无关的解向量。
又A
*
(α
1
,α
2
,α
3
,α
4
)=A
*
A=|A|E=0,所以向量α
1
,α
2
,α
3
,α
4
都是方程组A
*
x=0的解。将(1,0,2,0)
T
代入方程组Ax=0可得α
1
+2α
2
=0,这说明α
1
可由向量组α
2
,α
3
,α
4
线性表出,而向量组α
1
,α
2
,α
3
,α
4
的秩等于3,所以向量组α
2
,α
3
,α
4
必线性无关,故选C。
事实上,由α
1
+2α
3
=0可知向量组α
1
,α
2
,α
3
线性相关,A选项不正确;显然,B选项中的向量都能被α
1
,α
2
,α
3
线性表出,说明向量组α
1
+α
2
,α
2
+α
3
,α
1
+α
3
线性相关,B选项不正确;而D选项中的向量组含有四个向量,不是基础解系,所以D选项也不正确。
转载请注明原文地址:https://jikaoti.com/ti/ltoRFFFM
0
考研数学一
相关试题推荐
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设函数f0(x)在(-∞,+∞)内连续,fn(x)=∫0xfn-1(t)dt(n=1,2,…).证明:fn(x)=1/(n-1)!∫0xf0(t)(x-t)n-1dt(n=1,2,…);
已知二元函数f(x,y)满足且f(x,y)=g(u,v),若=u2+v2,求a,b.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.求此时的D1+D2.
计算,其中L为x2+y2=1从点A(1,0)经过B(0,1)到C(一1,0)的曲线段.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k.证明:当k>0时,f(x)在[a,b]上连续;
求f(x)=的间断点并判断其类型.
设一汽车沿街道行驶,需要经过三个有红绿灯的路口,每个信号灯显示是相互独立的,且红绿灯显示时间相等,以X表示该汽车首次遇到红灯前已通过的路口个数,求X的分布.
设函数f(x)=ln(2+t)dt,则f’(x)的零点个数()
随机试题
原核生物的mRNA转录终止需要下列哪种因子
上消化道不包括
关于手术切口,哪项是错误的
关于流动资产的评估,下列说法不正确的是()。
下列关于国际债券的说法中,正确的是()。
衍生金融工具是通过某种交易方式,从普通金融工具派生出来的金融工具,其自身价值决定于其所()。
根据增值税法律制度的规定,纳税人销售货物向购买方收取的下列款项中,属于价外费用的有()。
根据下列材料回答问题。2015年,能够从上述资料推出的是()。
Weallliketofeelneeded.Butnewresearchsuggestshavingasenseofpurposeisgoodforourhealth,too.Inastudyof7
TopicMyViewonModestyinModernSocietyForthispart,youareallowed30minutestowriteashortessayentitledMyView
最新回复
(
0
)