首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组α1x1+α1x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明之; (
设线性方程组α1x1+α1x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明之; (
admin
2019-08-09
29
问题
设线性方程组α
1
x
1
+α
1
x
2
+α
3
x
3
+α
4
x
4
=β,其中α
i
(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
。
(Ⅰ)问β能否由α
2
,α
3
,α
4
线性表出,若能表出,则写出表出式;若不能表出,请证明之;
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由;
(Ⅲ)求线性方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β的通解。
选项
答案
(Ⅰ)由已知条件可知β可由α
i
(i=1,2,3,4)线性表出,且 β=(4—2k)α
1
+(3k一1)α
2
+kα
3
+3α
4
,其中k为任意常数。 当k=2时,则可得到β=5α
2
+2α
3
+3α
4
。因此β能由α
2
,α
3
,α
4
线性表出。 (Ⅱ)方程组的通解为k(一2,3,1,0)
T
+(4,一1,0,3)
T
,则系数矩阵的秩和增广矩阵的秩均为3,且一2α
1
+3α
2
+α
3
=0,得 α
3
=2α
1
—3α
2
。(*)假设α
4
能由α
1
,α
2
,α
3
线性表出,则存在不全为零的数k
1
,k
2
,k
3
使 α
4
=k
1
α
1
+k
2
α
2
+k
3
α
3
, 将(*)式代入可得 α
4
=k
1
α
1
+k
2
α
2
+k
3
α
3
=(k
1
+2k
3
)α
1
+(k
2
—3k
3
)α
2
, 因此可知r(α
2
,α
3
,α
4
)≤2,该结果与r(α
1
,α
2
,α
3
,α
4
)=3矛盾,因此α
4
不能由α
1
, α
2
,α
3
线性表出。 (Ⅲ)因为方程组(α
1
,α
2
,α
3
,α
4
)x=β有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
,因此可知 r(α
1
+β,α
1
,α
2
,α
3
,α
4
)=r(α
1
+β,α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3, 故方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β有解,由 0.(α
1
+β)+4α
1
一α
2
+0.α
3
+3α
4
=β,得η
1
=(0,4,一1,0,3)
T
; 0.(α
1
+β)一2α
1
+3α
2
+α
3
+0.α
4
=0,得ξ=(0,一2,3,1,0)
T
; (α
1
+β)一α
1
+0.α
2
+0.α
3
+0.α
4
=β,得η
2
=(1,一1,0,0,0)
T
, 得所求方程组的通解为 [*] 其中ξ与η
1
一η
2
不成比例,是线性无关的。
解析
转载请注明原文地址:https://jikaoti.com/ti/loQRFFFM
0
考研数学一
相关试题推荐
证明
计算行列式
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.(Ⅰ)求第三辆车C在加油站等待加油时间T的概率密度
设随机变量X在区间(1,3)上服从均匀分布,而Y在区间(X,3)上服从均匀分布.试求:(Ⅰ)随机变量X和Y的联合概率密度f(χ,y);(Ⅱ)随机变量Y的概率密度fY(y).
已知随机变量X与Y的联合概率分布为又P{X+Y=1}=0.4,则α=_______;β=_______;P{X+Y<1}=_______;P{X2Y2=1}=_______.
求以曲线Γ:为准线,母线平行于直线x=y=z的柱面过程。
求函数的连续区间,并求极限
求其中Ω:x2+y2+z2≤R2(R>0)。
计算曲面积分其中∑是旋转抛物面介于平面z=0及z=2之间的部分的下侧。
随机试题
A.近曲小管B.髓袢降支细段C.髓袢升支粗段D.远曲小管E.集合管继发性主动转运Cl-的部位是()
A.胰高血糖素B.胰岛素C.生长抑素D.胰多肽E.胃泌素胰岛A细胞可分泌
细菌对氨基糖苷类药物产生耐药是由于产生( )。
在法学中所称的法律渊源,通常是指什么?()
下列属于结构材料的是()。
送走旅游团,就意味着全部接待工作的结束。()
某国一足球杂志报道说,30年来该国足球甲级联赛的冠军都是通过假球决出来的。该杂志还给出证据说,有一位不愿透露姓名的参赛队员告诉记者,他和他的队友曾收取了20万美元的贿赂,于是他们在一场关键性的比赛中踢假球,最终让另一支球队获胜。但是,该国足球联赛主席则对这
有人认为:“主合同内容发生变更的,保证人免除保证责任。”请对该说法加以辨析。
求微分方程y"+y=cosx的通解.
A、Atthepolicestation.B、Intheparkinglot.C、Attheshoppingcenter.D、Attheconcert.C这对夫妇买完东西后,回家发现车被偷了。因此车是他们在购物中心时被偷的。
最新回复
(
0
)