首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2018-11-11
49
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://jikaoti.com/ti/liWRFFFM
0
考研数学二
相关试题推荐
设二维随机变量(X,Y)的分布函数为F(x,y)=,则常数A和B的值依次为()
设函数f(x)具有连续的二阶导数,且点(0,f(0))是函数y=f(x)对应曲线的拐点,则
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值.若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值.若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求A的另一特征值和对应的特征向量;
设总体X服从正态分布N(μ,σ2),S2为样本方差,证明S2是σ2的一致估计量.
设总体X的概率密度为其中参数θ(0
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,fx’(0,0)=2,fy’(0,y)=一3以及fxx"(x,y)=y,fxy"(x,y)=x+y,求f(x,y)的表达式.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设计算行列式|A|.
设D由抛物线y=χ2,y=4χ2及直线y=1所围成.用先χ后y的顺序,将I=f(χ,y)dχdy,化成累次积分.
随机试题
以下哪个不是影响系统可维护性的主要因素?()
异哉席生,何其伟也
关于病例-对照研究特点哪项是错误的
补气兼燥湿止汗安胎宜选补气兼祛痰止咳解毒宜选
关于诚实守信的说法中,正确的是()。
2008年国考)在古典传统里,和谐的反面是千篇一律:“君子和而不同,小人同而不和”,所以和谐的一个条件是对于多样性的认同。中国人甚至在孔子之前就有了对于和谐的经典认识与体现。中国古代的音乐艺术很发达,特别是一些中国乐器,像钟、磐、瑟等各种完全不同的乐器按照
怀特认为,教育应该增进受教育者的幸福感,这种观点可能比教育应该以追求知识本身为目的的观点更有市场。大多数人认为,教育应主要考虑学生的利益。你怎样看待这一观点?这种观点对基础教育改革有什么意义?
下列有关我国法的渊源的表述,正确的是()。
根据“准五服以治罪”制度,与侵犯一般人相比,法律对叔父殴打侄子的行为处罚()
Backintheday,agoodreportcardearnedyouaparentalpatontheback,butnowitcouldbemoneyinyourpocket.Experiments
最新回复
(
0
)