设f(x)是[0,1]上单调减少的正值连续函数,证明 ∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx, 即要证 I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x

admin2019-08-06  34

问题 设f(x)是[0,1]上单调减少的正值连续函数,证明

    ∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,
即要证    I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x)dx≥0.

选项

答案记I=∫01f2(x)dx.∫01f3(x)dx—∫01xf3(x)dx.∫01f2(x)dx,则由定积分与积分变量所 I=∫01xf2(x)dx.∫01f3(y)dy—∫01yf3(y)dy.∫01f2(x)dx =∫0101xf2(x)f3(y)dxdy—∫0101yf3(y)f2(x)dxdy =[*]f2(x)f3(y)(x一y)dxdy, ① 其中D={(x,y)|0≤x≤1,0≤y≤1}. 由于积分区域D关于直线y=x对称,又有 I=[*]f2(y)f3(x)(y一x)dxdy. ② 由①式与②式相加,得 I=[*]f2(x)f2(y)(y一x)[f(x)一f(y)]dxdy. 由于f(x)单调减少,所以I≥0,即∫01f2(x)dx.∫01f3(x)dx≥∫01xf3(x)dx.∫01f2(x)dx.(*) 又f(x)取正值,故∫01xf3(x)dx>0,∫01f3(x)dx>0.用∫01xf3(x)dx与∫01f3(x)dx除(*)式,不等式得证。

解析
转载请注明原文地址:https://jikaoti.com/ti/lhnRFFFM
0

最新回复(0)