首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明λ也是n阶矩阵BA的特征值.
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明λ也是n阶矩阵BA的特征值.
admin
2020-11-13
37
问题
设λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,证明λ也是n阶矩阵BA的特征值.
选项
答案
根据特征值的定义证明. 设λ是矩阵AB的任一非零特征值,ζ是对应于它的特征向量.即有 ABζ=ζ. ① 用矩阵B左乘上式两边,得(BA)ζ=B(ABζ)=Bλζ=λ(Bζ), 若Bζ≠0,则由特征值定义知,λ为BA的特征值.下面证明Bζ≠0.事实上, 由λ≠0,特征向量ζ≠0,有λζ≠0,再由①式得.ABζ≠0,因此Bζ≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/laaRFFFM
0
考研数学三
相关试题推荐
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=__________.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
设n(n≥2)阶矩阵A非奇异,A*是矩阵A的伴随矩阵,则().
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明
随机试题
根据傅立叶定律,式中△t是()。
为联合药敏试验协同作用的结果是
下列哪种药物不能在妊娠合并淋菌感染时使用
同一台水泵,在运行中转速由n1变为n2,则其比转数ns值()。
经( )同意,可以由两个以上的承揽人共同完成定作人交付的工作。
下列设备中属于轻小型起重设备的有()。
下面不能用三角板画出的角是()。
患者,女性,64岁,发现左上牙龈菜花样溃疡2个月,病检诊断为“鳞癌Ⅰ级”。检查见溃疡1.5cm×1.5cm大小。X线片示溃疡区牙槽突骨质有破坏,颌面颈部未触及明显肿大淋巴结。该患者应选择的最佳治疗方案为()。
级数的和等于()
spring
最新回复
(
0
)