[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a). (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点

admin2019-04-05  62

问题 [2008年]  (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点ξ∈(1,3),使得φ″(ξ)<0.

选项

答案利用介值定理证明(I),利用积分中值定理和拉格朗日中值定理证明(Ⅱ). 证 (I)设M和m分别为函数f(x)在区间[a,b]上的最大值及最小值,则 m(b一a)≤∫abf(x)dx≤M(b-a). 在以上不等式两边各除以b一a,得到 m≤[*]∫abf(x)dx≤M. 这表明确定的数[*]∫abf(x)dx介于函数f(x)的最小值m及最大值M之间.由闭区间上连续函数的介值定理知,在[a,b]上至少存在一点η,使得函数f(x)在点η处的值与这个确定的数值相等,即应有 [*]∫abf(x)dx=f(η) (a≤η≤b). 两端各乘以b-a,即得所要证的等式. (Ⅱ)由(I)的结论知,至少存在一点η∈[2,3],使 ∫232φ(x)dx=φ(η)(3-2)=φ(η),2≤η≤3. 又由φ(2)>∫23φ(x)dx=φ(η),φ(2)>φ(1)知,对φ(x)分别在[1,2]及[2,η]上使用拉格朗日中值定理,得到 φ′(ξ1)=[*]>0, 1<ξ1<2, φ′(ξ2)=[*]<0, 2<ξ2<η≤3. 在[ξ1,ξ2]上对导函数φ′(x)使用拉格朗日中值定理,得到 φ″(ξ)=[*]<0, ξ∈(ξ1,ξ2)[*](1,3).

解析
转载请注明原文地址:https://jikaoti.com/ti/lKLRFFFM
0

最新回复(0)