首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组AX=B的系数矩阵的秩为r,η1,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-+1 (其中k1+…+kn-r+1=1).
设非齐次线性方程组AX=B的系数矩阵的秩为r,η1,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-+1 (其中k1+…+kn-r+1=1).
admin
2016-05-31
57
问题
设非齐次线性方程组AX=B的系数矩阵的秩为r,η
1
,η
n-r+1
是它的n-r+1个线性无关的解.试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解.取ξ
1
=η
2
-η
1
,ξ
2
=η
3
-η
1
,…,ξ
n-r
=η
n-r+1
-η
1
,根据线性方程解的结构,则它们均为对应齐次 方程Ax=0的解. 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0,即l
1
(η
2
-η
1
)+l
2
(η
3
-η
1
)+…+l
n-r
(η
n-r+1
-η
1
)=0,亦即-(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0. 由η
1
,η
2
,…,η
n-r+1
线性无关知-(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0,与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立.因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的一组基. 由于x,η
1
均为Ax=b的解,所以x-η
1
为Ax=0的解,因此x-η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设x-η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
-η
1
)+k
3
(η
3
-η
1
)+…+k
n-r+1
(η
n-r+1
-η
1
), 则 x=η
1
(1-k
2
-k
3
-…-k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
=0, 令k
1
=1-k
2
-k
3
…-k
n-r+1
则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/lJxRFFFM
0
考研数学三
相关试题推荐
我国宪法赋予公民的一项基本权利,公民实现其他权利的前提与基础的是()。
在社会公共生活领域中,人员构成复杂,素质参差不齐,正常的生活秩序可能受到影响甚至被破坏,社会公德最基本的要求,维护公共生活秩序的重要条件是()。
既是我国重要的法律原则和道德规范,同时也是我国的基本国策的是()。
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
设是两条异面直线;(1)求l1与l2的公垂线方程;(2)l1与l2的距离.
用元素法推证:由平面图形0≤a≤x≤b,0≤y≤f(x)绕y轴旋转所得的旋转体的体积为
随机试题
对诊断精神分裂症最有意义的一组症状是
用氧安全的重点是做好“四防”,其内容不包括
2000年9月3日夜晚,张某在某大学附近冒充警察,查验两名逛街回来正准备返校的女生王某和李某的身份证,二人没带。张某便以两位女生行踪可疑为由,要带她们去“警区”了解情况。张某将王某和李某带至郊区的一处房内,将二人锁在屋里,并对二人说没有身份证不能放她们出去
工程量清单招标时,投标人编制投标报价前应认真复核工程量清单中的分部分项工程量,因为该工程量会影响()。
在国际货运中经常采用集装箱租赁的办法,若想租期为一年,每日都确定提、还箱量及地点,而且租金按使用天数计算。这种租赁方法称为()。
企业在市场细分之后,不考虑各子市场的特性,而只注重子市场的共性,决定只推出单一产品,运用单一的市场营销组合,力求在一定程度上适合尽可能多的顾客的需求。这是()。
ThegrammaticalwordswhichplaysolargeapartinEnglishgrammarareforthemostpartsharplyandobviouslydifferent
某企业采用Windows2000操作系统部署企业虚拟专用网(VPN),将企业的两个异地网络通过公共Internet安全地互联起来。微软Windows2000操作系统当中对IPSec具备完善的支持,图13-3给出了基于Windows2000系统部署
Trainingastronauts______notaneasything.
BeingEnthusiasticinLifeForthispart,youareallowed30minutestowriteanessayonenthusiasmbyreferringtothesayi
最新回复
(
0
)