首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
admin
2016-10-21
30
问题
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ.
选项
答案
即证[∫
0
1
f(χ)dχ]
2
>∫
0
1
f
3
(χ)dχ>0.考察F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt, 若能证明F(χ)>0(χ∈(0,1])即可.这可用单调性方法. 令F(χ)=[∫
0
χ
f(t)dt]
2
-∫
0
χ
f
3
(t)dt,易知F(χ)在[0,1]可导,且 F(0)=0,F′(χ)=f(χ)[2∫
0
χ
f(t)dt-f
2
(χ)]. 由条件知,f(χ)在[0,1]单调上升,f(χ)>f(0)=0(χ∈(0,1]),从而F′(χ)与g(χ)=2∫
0
χ
f(t)dt-f
2
(χ)同号.再考察 g′(χ)=2f(χ)[1-f′(χ)]>0(χ∈(0,1)), g(χ)在[0,1]连续,于是g(χ)在[0,1]单调上升,g(χ)>g(0)=0(χ∈(0,1]),也就有F′(χ)>0(χ ∈(0,1]),即F(χ)在[0,1]单调上升,F(χ)>F(0)=0(χ∈(0,1]).因此 F(1)=[∫
0
χ
f(χ)dχ]
2
-∫
0
1
f
3
(χ)dχ>0. 即结论成立.
解析
转载请注明原文地址:https://jikaoti.com/ti/lBzRFFFM
0
考研数学二
相关试题推荐
2
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设a1=1,当n≥1时,,证明:数列{an}收敛并求其极限.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设f(x)二阶连续可导,f"(0)=4,
若f(x)在[0,a]上连续,a>0,且f"(x)≥0,证明:∫abf(x)dx≥a.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
A、上鼻道B、中鼻道C、下鼻道D、上鼻甲E、下鼻甲属于面颅骨的是()
孕妇,孕32周。反复无痛阴道出血,充盈膀胱后发现胎盘下缘达宫颈内口,诊断为
A.脉B.皮C.肉D.筋E.骨五体中与脾相合的是
关于小儿静脉补钾浓度,哪项正确
下列产品中,属于消费税征税范围的是()。(2015年)
人体内某反射弧如图一所示,电流计的两个电极位于神经纤维膜的外侧:当给予A点不同强度刺激后,A点在不同时刻膜电位的变化情况如图二所示:图三则示意给予A点刺激后,在某一时刻不同位点膜电位的情况。请据图分析作答:轴突膜处于HI段状态时,_________
统计图根据下图提供的信息回答121~125题。该班级60分以下人数最多的年份是()。
父母不可能整天与他们的未成年孩子待在一起。卸使他们能够这样做,他们也并不总是能够阻止他们的孩子去做可能伤害他人或损坏他人财产的事情。因此,父母不能因为他们的未成年孩子所犯的过错而受到指责或惩罚。如果以下一般原则成立,哪一项最有助于支持上面论证中的结论
InOctober2002,GoldmanSachsandDeutscheBank【B1】______anewelectronicmarketforeconomicindicesthat【B2】______substanti
学院的每名教师只能属于一个系,则实体系和实体教师间的联系是
最新回复
(
0
)