设函数f(x)在(-∞,+∞)内连续,且,证明: (Ⅰ)若f(x)是偶函数,则F(x)也是偶函数; (Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。

admin2019-01-15  48

问题 设函数f(x)在(-∞,+∞)内连续,且,证明:
(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数;
(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。

选项

答案方法一:(Ⅰ)[*] 若f(x)是偶函数,则有f(-x)=f(x)。故 [*] 即F(x)也是偶函数。 (Ⅱ)欲证F(x)是单调减函数,则需证F(x)<0或F(x)≤0且等号仅在某些点成立。 由已知[*] 则有[*] 因f(x)是单调减函数,t介于0与x之间,所以当x>0时,f(x)-f(t)<0,故F(x)<0;当x<0时,f(x)-f(t)>0,故F(x)<0;当x=0时,F(0)=0。 即x∈(-∞,+∞)时,F(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。 方法二:(Ⅰ)用函数奇偶性质,[*]。 因f(t)是偶函数,则tf(t)是奇函数。而f(t)是偶函数[*]是奇函数[*]是偶函数;tf(t)是奇函数[*]是偶函数。因此,由偶函数的性质知F(x)是偶函数。 (Ⅱ)由[*],由积分中值定理知,存在一点ξ∈(0,x),使得[*],故 F(x)=xf(x)-f(ξ)x=x[f(x)-f(ξ)]。 与方法以同样讨论可知F(x)是单调减函数。

解析
转载请注明原文地址:https://jikaoti.com/ti/kvBRFFFM
0

随机试题
最新回复(0)