首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明=x0∈(2π,)使得F″(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明=x0∈(2π,)使得F″(x0)=0.
admin
2018-04-15
19
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明
=x
0
∈(2π,
)使得F″(x
0
)=0.
选项
答案
显然F(0)=F[*]=0,于是由罗尔定理知,[*]x
1
∈(0,[*]),使得F′(x
1
)=0.又 F′(x)=2(sinx一1)f(x)+(8inx一1)
2
f′(x), [*] 对F′(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈(x
1
,[*]),使得F″(x
0
*
)=0. 注意到F(x)以2π为周期,F′(x)与F″(x)均为以2π为周期的周期函数,于是[*]x
0
=2π+x
0
*
,即 x
0
∈(2π,[*]),使得 F″(x
0
)=F″(x
0
*
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明
,使得F″(x
0
*
)=0即可.
转载请注明原文地址:https://jikaoti.com/ti/kjVRFFFM
0
考研数学一
相关试题推荐
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).计算
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
=___________.
设X1,X2,…,X10是取自正态总体分布N(μ,σ2)的简单随机样本,是样本均值,记已知P(T≥a)=0.05,求a的值。
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是()。
已知三阶矩阵A满足A3=2E,若B=A2+2A+E,证明B可逆,且求B-1。
求幂级数的收敛域及和函数。
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设一部机器一天内发生故障的概率为,机器发生故障时全天停止工作.若一周5个工作日无故障,则可获利10万元;发生一次故障获利5万元;发生两次故障获利0元;发生三次及以上的故障亏损2万元,求一周内利润的期望值.
随机试题
在40%的环境中,机体散热的方式是
关于视诊下列叙述正确的是()
女孩,11岁,发热10天,体温38~39℃,刺激性咳嗽明显,胸痛。查体:双肺散在于鸣音,胸片:左肺下野淡薄片状阴影。为确诊首选的检查是
入境货物需要分销数地的,进口商应在报检时提出申请,检验检疫机构按分销批数分证,证书副本送分销地检验检疫机构。( )
赵某、钱某、孙某、李某共同出资设立甲普通合伙企业(下称“甲企业”)。合伙协议约定:(1)赵某、孙某、李某以货币各出资10万元,钱某以房屋作价出资10万元。(2)合伙人向合伙人以外的人转让其在甲企业中的全部或者部分财产份额时,须经半数以,上合伙人同意。
2013年全国城镇居民人均可支配收人同比增长约为()。
下面关于中国精神、时代精神、民族精神的论述正确的是()
Salesman:______Customer:Yes.WhatsizeisthatgreenT-shirt?
Therelationshipbetweenlanguageandgenderhaslongbeenofinterestwithinsociolinguisticsandrelateddisciplines.Early2
A、Becausethereisnootherwomanthere.B、Becauseitwillruinherplanoflosingweight.C、Becauseshehasplannedtogotoan
最新回复
(
0
)