首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
[2012年] 已知A=,二次型f(x1,x2,x3)=XT(ATA)X的秩为2. (Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
admin
2019-05-10
91
问题
[2012年] 已知A=
,二次型f(x
1
,x
2
,x
3
)=X
T
(A
T
A)X的秩为2.
(Ⅰ)求实数a的值;(Ⅱ)利用正交变换X=QY将f化为标准形.
选项
答案
(I)由秩(A
T
A)=秩(A)=2可求得a的值;(Ⅱ)写出二次型矩阵A
T
A求出其特征值,将每一个特征值代入(Aλ-AE)X=0求出其基础解系,将基础解系正交规范化,以这些向量为列向量的矩阵即为正交变换Q.这时以特征值为系数的标准形即为所求的标准形. (I)因二次型的秩为2,故秩(A
T
A)=秩(A)=2,而 [*] 故当a=一1时秩(A)=2,即实数a的值等于一1. (II)令B=A
T
A=[*],则 [*] =(λ一2)[(λ一2)(λ一4)一8]=λ(λ一2)(λ一6). 故B的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 解(2E—B)X=0,(6E—B)X=0,(0E—B)X=0,得其基础解系分别为 α
1
=[1,一1,0]
T
,α
2
=[1,1,2]
T
,α
3
=[1,1,一1]
T
. 因λ
1
,λ
2
,λ
3
互异,α
1
,α
2
,α
3
必相互正交,只需将其单位化,得 β
1
=[*][1,一1,0]
T
,β
2
=[*][1,1,2]
T
,β
3
=[*][1,1,一1]
T
. 令Q=[β
1
,β
2
,β
3
],则Q为正交矩阵.在正交变换X=QY下,有Q
T
BQ=Q
T
(A
T
A)Q=Λ,其中对角阵为A=diag(2,6,0).这时,二次型f化为标准形 f(X)=X
T
(A
T
A)X=Y
T
ΛY=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/kLLRFFFM
0
考研数学二
相关试题推荐
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设曲线L1与L2皆过点(1,1),曲线L1在点(χ,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(χ,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=_______.
求不定积分
设f′(lnχ)=1+χ,且f(0)=1,求f(χ).
求椭圆=1与椭圆=1所围成的公共部分的面积.
(1)设=0,求a,b的值.(2)确定常数a,b,使得ln(1+2χ)+=χ+χ2+o(χ2).(3)设b>0,且=2,求b.
设有n元实二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ2)2+…+(χn-1+an-1χn)2+(χn+anχ1)2,其中a(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足________条件时,二次型f为正定二次型
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
[2017年]已知平面区域D={(x,y)∣x2+y2≤2y),计算二重积分(x+1)2dxdy.
随机试题
分析西方国家普选权的实现过程。
男,50岁,急性肠梗阻2天。查体:PI10次/分,BP80/55mmHg,皮肤弹性差,眼眶凹陷。尿比重1.020,血Na+135mmol/L。最可能的诊断为
超声探头必须具有一定的技术特性,下列哪一项是错误的()
某男,28岁,平素嗜食辛辣,一个月前因饮酒过度引起上腹部疼痛,多方治疗效果不佳。现病人胃脘隐隐灼痛,饥不欲食,嘈杂,口燥咽干,口渴欲饮,体瘦,大便偏干,舌红无苔而干,脉细。宜选何方
以上哪种毒物中毒常出现瘫痪以上哪种毒物中毒常出现肌纤维颤动
夫妻财产方面的权利义务体现在众多方面,但不包括( )。
影响客户风险承受能力的因素有()。
Forgetmilkydrinks,hotwaterbottlesorcurlingupwithagoodbook.Therealsecrettoagoodnight’ssleepmaybewhereyou
下列选项默认的布局管理器不是BorderLayout的是
设有一个栈与一个队列的初始状态均为空。现有一个序列A,B,C,D,E,E,G,H。先分别将序列中的前4个元素依次入栈,后4个元素依次入队;然后分别将栈中的元素依次退栈,再将队列中的元素依次退队。最后得到的序列为
最新回复
(
0
)