设f(x,y)在[a,b]×[c,d]上连续,g(x,y)=∫0xdu∫cyf(u,v)dv,证明:g’’xy=g’’yx=f(x,y)(a<x<b,c<y<d).

admin2021-08-02  16

问题 设f(x,y)在[a,b]×[c,d]上连续,g(x,y)=∫0xdu∫cyf(u,v)dv,证明:g’’xy=g’’yx=f(x,y)(a<x<b,c<y<d).

选项

答案由于 [*] 又g(x,y)=∫axdu∫cxf(u,v)=∫cydv∫ax(u,v)du,故g”xy=f(x,y),所以g”xy=g”yx=f(x,y).

解析
转载请注明原文地址:https://jikaoti.com/ti/kKlRFFFM
0

最新回复(0)