首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T. (1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
admin
2018-07-30
44
问题
(1999年)设向量组α
1
=[1,1,1,3]
T
,α
2
=[-1,-3,5,1]
T
,α
3
=[3,2,-1,p+2]
T
,α
4
=[-2.-6,10,p]
T
.
(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
对矩阵A=[α
1
α
2
α
3
α
4
┆α]作初等行变换: [*] (1)当p≠2时,矩阵[α
1
α
2
α
3
α
4
]的秩为4,即向量组α
1
,α
2
,α
3
,α
4
线性无关.此时设α=x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
.解得 x
1
=2,x
2
=[*],x
3
=1,x
4
=[*] 即有α=2α
1
+[*]α
2
+α
3
+[*]α
1
. (2)当p=2时,向量组α
1
α
2
α
3
α
4
线性相关.此时该向量组的秩为3.α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://jikaoti.com/ti/kHWRFFFM
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
设x与y均大于0且x≠y,证明
曲线y=的渐近线条数为().
设A是,n阶矩阵,下列结论正确的是().
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则=_______
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设A为n阶矩阵,且|A|=0,则A().
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
随机试题
阅读下面的文章,回答下列问题。技术塑造全新的理论范式。大数据技术给公共管理带来了一场新的范式革命,这场范式革命表现在:第一,方法论范式的转型。大数据借助于云平台而具有数据搜集、分析、管理、挖掘和重组的功能,以及基于多类型数据和海量数据的预测功能,从而形成
肾纤维囊为贴于肾筋膜表面的一层结缔组织膜与肾筋膜很难分离。
A.苯二氮卓类药物B.美沙酮C.纳洛酮D.可乐定E.氟哌啶醇治疗苯丙胺所致幻觉、妄想的是
患者,女性,20岁,乳房肿块,边缘清晰,活动度大,生长缓慢。最常见是
在以下哪些情况下,买受人应当承担标的物毁损、灭失的风险?()。
下列关于城市设计理沦与其代表人物的表述,正确的是()。
多式联运提单中运用最多的是()。
下列对使用直观性教学原则的要求表达正确的是()。
讨论无穷积分的敛散性.
在某DHCP客户机上捕获的4条报文如下表所示,表中对第4条报文进行了解析。分析表中的信息并补全空白处的信息。
最新回复
(
0
)