首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. (1)求f(x); (2)求u(x,y)的一般表达式.
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. (1)求f(x); (2)求u(x,y)的一般表达式.
admin
2020-03-10
34
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某二元函数u(x,y)的全微分.
(1)求f(x);
(2)求u(x,y)的一般表达式.
选项
答案
(1)由题意知, du=[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy, 即[*]=xy(1+y)一f(x)y,[*]=f(x)+x
2
y. 由于f(x)具有一阶连续导数,所以u的二阶混合偏导数连续,所以有[*]即有 x(1+2y)一f(x)=f’(x)+2xy, f’(x)+f(x)=x. 又f(0)=0,可求得f(x)=x一1+e
-x
. (2)由(1)知du=(xy
2
+y—ye
-x
)dx+(x一1+e
-x
+x
2
y)dy. 求u(x,y)有多种方法. du=(xy
2
+y-ye
-x
)dx+(x-1+e
-x
+x
2
y)dy =xy(ydx+xdy)+(ydx+xdy)+(一ye
-x
dx+e
-x
dy)一dy=[*] 所以u(x,y)=[*]+xy+ye
-x
一y+C(C为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/jtiRFFFM
0
考研数学三
相关试题推荐
当a取下列哪个值时,函数,(x)=2x3-9x2+12x-a恰有两个不同的零点.
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则下列服从相应区间或区域上均匀分布的是()
曲线y=的渐近线的条数为().
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确的个数为()
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
设二元函数f(x,y)=计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
(2011年)设{un}是数列,则下列命题正确的是()
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
设随机变量X1,X2,…,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,…,Xn}的数学期望和方差.
在边长为1的立方体中,设OM为对角线,OA为棱,求上的投影.
随机试题
控制体重是减少()发病率的一个关键因素。
左心血液循环的主要途径为
临床上应用最广泛的桥体类型是()
价格策略的重要性表现在以下方面()。
我国某法院接到一位中国公民提出的要求承认一项外国法院判决的申请。依我国法律规定.关于承认该外国判决,下列哪一选项是错误的?(2007年卷一第41题)
下列工程建设项目参与方中,()不是一般工程建设项目管理中绝对必需的一方。
当某一地的旅游活动被迫取消时,导游人员选定替代原景点的新景点后,要以精彩的介绍、新奇的内容和最佳的安排激起旅游者的兴趣,使新的安排得以实现。()
设P(χ)为多项式,α为P(χ)=0的,r重根,证明:α必定是P′(χ)=0的r-1重根。
DNA是人类进行亲子鉴定的主要依据,就DNA的组成,下面说法正确的是()。
【F1】JapansaidTuesdayithadsuccessfullyextractedmethanehydrate,knownas"fireice",fromitsseabed,possiblyunlockingm
最新回复
(
0
)