首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 (I)证明:向量组β,Aβ,A2β线性无关; (Ⅱ)如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 (I)证明:向量组β,Aβ,A2β线性无关; (Ⅱ)如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
admin
2020-05-16
42
问题
设A为三阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
。
(I)证明:向量组β,Aβ,A
2
β线性无关;
(Ⅱ)如果A
3
β=Aβ,求秩r(A—E)及行列式|A+2E|。
选项
答案
(I)设k
1
,k
2
,k
3
,是实数,满足k
1
β+k
2
Aβ+k
3
A
2
β=0,根据已知有Aα
i
=λ
i
α
i
,(i=1,2,3),所以Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
,将上述结果代入k
1
β+k
2
Aβ+k
3
A
2
β=0可得(k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0。 α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,则三个向量必定线性无关,因此[*]由于该线性方程组的系数矩阵的行列式[*],因此k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关。(H)根据A
3
β=Aβ可得[*] 令P=(β,Aβ,A
2
β),则矩阵P是可逆的,[*],根据相似矩阵的秩及行列式相等,有[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/jqaRFFFM
0
考研数学三
相关试题推荐
设求曲线y=f(x)与x轴所围图形面积.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使fˊ(ξ)=0.
求
设f(x)在[0,+∞)上连续,且收敛,其中常数A>0.证明:
设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=________。
常数项级数的敛散性为_________.
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=______;
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:设U,V不相关,求常数(a,b之间的关系.
[*]+C,其中C为任意常数
已知极坐标系下的累次积分I=dθ∫0acosθf(rcosθ,rsinθ)rdr,其中a>0为常数,则I在直角坐标系下可表示为________。
随机试题
下列哪项符合偏头痛的临床特点
用于评价药物等效性的药物动力学参数有()
A、阿普唑仑B、异戊巴比妥C、地西泮D、佐匹克隆E、苯巴比妥脂溶性较高,起效快,属于巴比妥类的镇静催眠药是()。
治理泥石流方法很多,下列措施不适合于在上游形成区进行的是()。
气体灭火系统管道末端采用防晃支架固定,支架与末端喷嘴间的距离不大于()。
外国甲企业在我国境内拥有一处房产,境内未设有经营机构和代理机构。甲企业将该房产销售给乙外资企业,销售价格为3200万元人民币,乙企业以该房产按市场价格作价3500万元投资入股丙企业,乙企业拥有丙企业8%的股份,并按所拥有的股份分担风险,分享利润。对于上述业
贵州的野生动物十分丰富,下列已列入国家一类保护动物的是()。
岩石:矿物:成分()
福州大洋百货为了庆祝春节,特举行让利百万大酬宾促销活动,在二楼打出了买300送60元的优惠活动。其中某柜台各3000元卖出两件商品,其中盈亏均为20%,则该柜台应()。
非洲大陆新闻事业发展有哪些特点?
最新回复
(
0
)